Advertisement

International Urology and Nephrology

, Volume 47, Issue 7, pp 1149–1154 | Cite as

Changes of protein expression in prostate cancer having lost its androgen sensitivity

  • Gergely BánfiEmail author
  • Ivett Teleki
  • Péter Nyirády
  • Attila Keszthelyi
  • Imre Romics
  • Attila Fintha
  • Tibor Krenács
  • Béla Szende
Urology - Original Paper

Abstract

Objective

The majority of prostate cancers require androgen hormones for growth, and androgen ablation is an important part of the systemic treatment of advanced prostate cancer. Nevertheless, most of these cancers eventually relapse as they become less sensitive to androgen ablation and anti-androgen treatment. Elucidating the molecular events that are responsible for the conversion of androgen-sensitive cancers to androgen-refractory tumors may reveal new therapeutic opportunities.

Methods

In the present study, we investigated nine androgen-sensitive and nine androgen-refractory prostate cancer samples to evaluate the expression levels of 10 selected proteins that have been implicated in oncogenesis and cancer progression.

Results

Our immunohistochemical data show that three of the investigated proteins (i.e., minichromosome maintenance-2, methylguanine-DNA methyltransferase, and androgen receptor) are expressed at significantly different levels in the androgen-refractory cancer samples than in the androgen-sensitive tumors, whereas the expression levels of the seven other studied proteins (i.e., β-catenin, p27, p21, p16, Ki67, hypoxia-inducible factor 1 alpha, and geminin) are not significantly different regarding the two groups.

Conclusions

Our data suggest that the increased expression of minichromosome maintenance-2 and decreased expression of methylguanine-DNA methyltransferase related to androgen receptor are indicative of the androgen-refractory stage in prostate cancer. Further studies are required to determine whether these expression changes play a causative role in the transition of androgen-sensitive to androgen-refractory prostate cancer.

Keywords

Prostate carcinoma Castration resistant Androgen receptor Geminin MCM2 MGMT 

Notes

Acknowledgments

We thank Levente Herényi (Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary) for his continuing support of this research.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Jemal A, Siegel R, Xu J, Ward E (2010) Cancer statistics, 2010. CA Cancer J Clin 60(5):277–300PubMedCrossRefGoogle Scholar
  2. 2.
    Diokno AC (1998) Epidemiology of prostate cancer. West J Med 169(2):111–112PubMedCentralPubMedGoogle Scholar
  3. 3.
    Mottet N, Bellmunt J, Bolla M et al (2011) EAU guidelines on prostate cancer. Part II: treatment of advanced, relapsing, and castration-resistant prostate cancer. Eur Urol 59(4):572–583PubMedCrossRefGoogle Scholar
  4. 4.
    Hadaschik BA, Gleave ME (2007) Therapeutic options for hormone-refractory prostate cancer in 2007. Urol Oncol 25:413–419PubMedCrossRefGoogle Scholar
  5. 5.
    Williams EM, Higgins JP, Sangoi AR et al (2014) Androgen receptor immunohistochemistry in genitourinary neoplasms. Int Urol Nephrol 47(1):81–85PubMedCrossRefGoogle Scholar
  6. 6.
    Grossmann ME, Huang H, Tindall DJ (2001) Androgen receptor signaling in androgen- refractory prostate cancer. J Natl Cancer Inst 93:1687–1697PubMedCrossRefGoogle Scholar
  7. 7.
    Scher HI, Sawyers CL (2005) Biology of progressive, castration-resistant prostate cancer: directed therapies targeting the androgen-receptor signaling axis. J Clin Oncol 23(32):8253–8261PubMedCrossRefGoogle Scholar
  8. 8.
    Titus MA, Schell MJ, Lih FB et al (2005) Testosterone and dihydrotestosterone tissue levels in recurrent prostate cancer. Clin Cancer Res 11(13):4653–4657PubMedCrossRefGoogle Scholar
  9. 9.
    Shiota M, Yokomizo A, Naito S (2011) Increased androgen receptor transcription: a cause of castration-resistant prostate cancer and a possible therapeutic target. J Mol Endocrinol 47(1):25–41CrossRefGoogle Scholar
  10. 10.
    Vis AN, Noordzij MA, Fitoz K et al (2000) Prognostic value of cell cycle proteins p27(kip1) and MIB-1, and the cell adhesion protein CD44s in surgically treated patients with prostate cancer. J Urol 164(6):2156–2161PubMedCrossRefGoogle Scholar
  11. 11.
    Nikoleishvili D, Pertia A, Trsintsadze O et al (2008) Expression of p27((Kip1)), cyclin D3 and Ki67 in BPH, prostate cancer and hormone-treated prostate cancer cells. Int Urol Nephrol 40(4):953–959PubMedCrossRefGoogle Scholar
  12. 12.
    Kudahetti SC, Fisher G, Ambroisine L et al (2010) Transatlantic Prostate Group. Immunohistochemistry for p16, but not Rb or p21, is an independent predictor of prognosis in conservatively treated, clinically localised prostate cancer. Pathology 42(6):519–523PubMedCrossRefGoogle Scholar
  13. 13.
    Omar EA, Behlouli H, Chevalier S et al (2001) Relationship of p21(WAF-I) protein expression with prognosis in advanced prostate cancer treated by androgen ablation. Prostate 49(3):191–199PubMedCrossRefGoogle Scholar
  14. 14.
    Szász AM, Majoros A, Rosen P et al (2013) Prognostic potential of ERG (ETS-related gene) expression in prostatic adenocarcinoma. Int Urol Nephrol 45(3):727–733PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Zhao JH, Luo Y, Jiang YG et al (2011) Knockdown of β-Catenin through shRNA cause a reversal of EMT and metastatic phenotypes induced by HIF-1α. Cancer Investig 29(6):377–382CrossRefGoogle Scholar
  16. 16.
    Dudderidge TJ, McCracken SR, Loddo M et al (2007) Mitogenic growth signalling, DNA replication licensing, and survival are linked in prostate cancer. Br J Cancer 96(9):1384–1393PubMedCentralPubMedGoogle Scholar
  17. 17.
    Park JY (2010) Promoter hypermethylation in prostate cancer. Cancer Control 17(4):245–255PubMedCentralPubMedGoogle Scholar
  18. 18.
    Williams SG (2006) Characterization of the behavior of tree definitions of prostate specific antigen-based biochemical failure in relation to detection and follow-up biases: comparison with the American Society for Therapeutic Radiology and Oncology consensus definition. Int J Radiat Oncol Biol Phys 64(3):849–855PubMedCrossRefGoogle Scholar
  19. 19.
    Hussain M, Goldman B, Tangen C et al (2009) Prostate-specific antigen progression predicts overall survival in patients with metastatic prostate cancer: data from southwest oncology group trials 9346 (intergroup study 0162) and 9916. J Clin Oncol 27(15):2450–2456PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Grossmann ME, Huang H, Tindall DJ (2001) Androgen receptor signaling in androgen-refractory prostate cancer. J Natl Cancer Inst 93(22):1687–1697PubMedCrossRefGoogle Scholar
  21. 21.
    Jeronimo C, Henrique R, Oliveira J et al (2004) Aberrant cellular retinol binding protein 1 (CRBP1) gene expression and promoter methylation in prostate cancer. J Clin Pathol 57(8):872–876PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Jeronimo C, Henrique R, Hoque MO et al (2004) A quantitative promoter methylation profile of prostate cancer. Clin Cancer Res 10(24):8472–8478PubMedCrossRefGoogle Scholar
  23. 23.
    Kang GH, Lee S, Lee HJ et al (2004) Aberrant CpG island hypermethylation of multiple genes in prostate cancer and prostatic intraepithelial neoplasia. J Pathol 202(2):233–240PubMedCrossRefGoogle Scholar
  24. 24.
    Maruyama R, Toyooka S, Toyooka KO et al (2002) Aberrant promoter methylation profile of prostate cancers and its relationship to clinicopathological features. Clin Cancer Res 8(2):514–519PubMedGoogle Scholar
  25. 25.
    Yamanaka M, Watanabe M, Yamada Y et al (2003) Altered methylation of multiple genes in carcinogenesis of the prostate. Int J Cancer 106(3):382–387PubMedCrossRefGoogle Scholar
  26. 26.
    Mishra DK, Chen Z, Wu Y, Sarkissyan M, Koeffler HP, Vadgama JV (2010) Global methylation pattern of genes in androgen-sensitive and androgen-independent prostate cancer cells. Molecular cancer therapeutics 9(1):33–45PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Feldman BJ, Feldman D (2001) The development of androgen-independent prostate cancer. Nat Rev Cancer 1(1):34–45PubMedCrossRefGoogle Scholar
  28. 28.
    Melixetian M, Helin K (2004) Geminin: a major DNA replication safeguard in higher eukaryotes. Cell Cycle 3(8):1002–1004PubMedCrossRefGoogle Scholar
  29. 29.
    Meng MV, Grossfeld GD, Williams GH et al (2001) Minichromosome maintenance protein 2 expression in prostate: characterization and association with outcome after therapy for cancer. Clin Cancer Res 7(9):2712–2718PubMedGoogle Scholar
  30. 30.
    Romics I, Bánfi G, Székely E et al (2008) Expression of p21(waf1/cip1), p27 (kip1), p63 and androgen receptor in low and high Gleason score prostate cancer. Pathol Oncol Res 14(3):307–311PubMedCrossRefGoogle Scholar
  31. 31.
    Sugibayashi R, Kiguchi Y, Shimizu T et al (2002) Up-regulation of p21(WAF1/CIP1) levels leads to growth suppression of prostate cancer cell lines. Anticancer Res 22(2A):713–719PubMedGoogle Scholar
  32. 32.
    Dai Y, Bae K, Siemann DW (2011) Impact of hypoxia on the metastatic potential of human prostate cancer cells. Int J Radiat Oncol Biol Phys 81(2):521–528PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of UrologySemmelweis UniversityBudapestHungary
  2. 2.1st Department of Pathology and Experimental Cancer ResearchSemmelweis UniversityBudapestHungary
  3. 3.2nd Department of PathologySemmelweis UniversityBudapestHungary

Personalised recommendations