Advertisement

International Urology and Nephrology

, Volume 46, Issue 12, pp 2337–2345 | Cite as

Organ cross talk and remote organ damage following acute kidney injury

  • Rele Ologunde
  • Hailin Zhao
  • Kaizhi Lu
  • Daqing MaEmail author
Nephrology - Review

Abstract

Increasing evidence suggests that acute kidney injury (AKI) mediates a systemic response that can lead to multiple organ failure. AKI may manifest in a variety of clinical scenarios including kidney transplantation and is associated with a significantly high mortality. It has been postulated that specific pro-inflammatory cytokines, including IL-1β, IL-6, and TNF-α, may mediate a systemic response, resulting in recruitment of pro-inflammatory cells leading to organ failure. However, the specific mechanism by which the cytokine cascade results in distant organ damage is yet to be determined. Furthermore, it remains unclear as to whether cytokines mediate similar or differing responses in different end organs. This review summarizes the effects of AKI on remote organs and explores the role of systemic cytokines in mediating distant organ damage.

Keywords

Acute kidney injury Cytokine Remote organ injury 

Notes

Acknowledgments

This work was supported by the grants from the Medical Research Council (MRC)-DPFS, European Society of Anaesthesiology (ESA), Brussels, Belgium and the Royal College of Anaesthetizes BJA/RCoA.

Conflict of interest

The authors declare no conflicts of interest.

References

  1. 1.
    Bellomo R, Ronco C, Kellum JA, Mehta RL, Palevsky P, Acute Dialysis Quality Initiative w (2004) Acute renal failure-definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit Care 8(4):R204–R212. doi: 10.1186/cc2872 PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Bellomo R, Kellum JA, Ronco C (2012) Acute kidney injury. Lancet 380(9843):756–766. doi: 10.1016/S0140-6736(11)61454-2 PubMedCrossRefGoogle Scholar
  3. 3.
    Obermuller N, Geiger H, Weipert C, Urbschat A (2014) Current developments in early diagnosis of acute kidney injury. Int Urol Nephrol 46(1):1–7. doi: 10.1007/s11255-013-0448-5 PubMedCrossRefGoogle Scholar
  4. 4.
    Schiffl H, Fischer R (2012) Clinical cause of presumed acute tubular necrosis requiring renal replacement therapy and outcome of critically ill patients: post hoc analysis of a prospective 7-year cohort study. Int Urol Nephrol 44(6):1779–1789. doi: 10.1007/s11255-011-9994-x PubMedCrossRefGoogle Scholar
  5. 5.
    Bagshaw SM, Laupland KB, Doig CJ, Mortis G, Fick GH, Mucenski M, Godinez-Luna T, Svenson LW, Rosenal T (2005) Prognosis for long-term survival and renal recovery in critically ill patients with severe acute renal failure: a population-based study. Crit Care 9(6):R700. doi: 10.1186/cc3879 PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Hassoun HT, Grigoryev DN, Lie ML, Liu M, Cheadle C, Tuder RM, Rabb H (2007) Ischemic acute kidney injury induces a distant organ functional and genomic response distinguishable from bilateral nephrectomy. Am J Physiol Renal Physiol 293(1):F30–F40. doi: 10.1152/ajprenal.00023.2007 PubMedCrossRefGoogle Scholar
  7. 7.
    Liu M, Liang Y, Chigurupati S, Lathia JD, Pletnikov M, Sun Z, Crow M, Ross CA, Mattson MP, Rabb H (2008) Acute kidney injury leads to inflammation and functional changes in the brain. J Am Soc Nephrol 19(7):1360–1370. doi: 10.1681/asn.2007080901 PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Klein CL, Hoke TS, Fang W-F, Altmann CJ, Douglas IS, Faubel S (2008) Interleukin-6 mediates lung injury following ischemic acute kidney injury or bilateral nephrectomy. Kidney Int 74(7):901–909. doi: 10.1038/ki.2008.314 PubMedCrossRefGoogle Scholar
  9. 9.
    Hoke TS, Douglas IS, Klein CL, He Z, Fang W, Thurman JM, Tao Y, Dursun B, Voelkel NF, Edelstein CL, Faubel S (2007) Acute renal failure after bilateral nephrectomy is associated with cytokine-mediated pulmonary injury. J Am Soc Nephrol 18(1):155–164. doi: 10.1681/asn.2006050494 PubMedCrossRefGoogle Scholar
  10. 10.
    Zyga S, Sarafis P, Stathoulis J, Kolovos P, Theophilopoulos D (2009) Acute renal failure: methods of treatment in the intensive care unit. J Ren Care 35(2):60–66. doi: 10.1111/j.1755-6686.2009.00084.x PubMedCrossRefGoogle Scholar
  11. 11.
    Rabb H, Chamoun F, Hotchkiss J (2001) Molecular mechanisms underlying combined kidney-lung dysfunction during acute renal failure. Blood Purif Intensiv, Care 132Google Scholar
  12. 12.
    Dennen P, Douglas IS, Anderson R (2010) Acute kidney injury in the intensive care unit: an update and primer for the intensivist. Crit Care Med 38(1):261–275. doi: 10.1097/CCM.0b013e3181bfb0b5 PubMedCrossRefGoogle Scholar
  13. 13.
    Thuillier R, Favreau F, Celhay O, Macchi L, Milin S, Hauet T (2010) Thrombin inhibition during kidney ischemia-reperfusion reduces chronic graft inflammation and tubular atrophy. Transplantation 90(6):612–621PubMedCrossRefGoogle Scholar
  14. 14.
    Versteilen AM, Blaauw N, Di Maggio F, Groeneveld AB, Sipkema P, Musters RJ, Tangelder GJ (2011) Rho-kinase inhibition reduces early microvascular leukocyte accumulation in the rat kidney following ischemia-reperfusion injury: roles of nitric oxide and blood flow. Nephron Exp Nephrol 118(4):e79–e86. doi: 10.1159/000322605 PubMedCrossRefGoogle Scholar
  15. 15.
    Kwon O, Hong SM, Ramesh G (2009) Diminished NO generation by injured endothelium and loss of macula densa nNOS may contribute to sustained acute kidney injury after ischemia-reperfusion. Am J Physiol Renal Physiol 296(1):F25–F33. doi: 10.1152/ajprenal.90531.2008 PubMedCrossRefGoogle Scholar
  16. 16.
    Thurman JM (2007) Triggers of inflammation after renal ischemia/reperfusion. Clin Immunol 123(1):7–13. doi: 10.1016/j.clim.2006.09.008 PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Saikumar P, Venkatachalam MA (2003) Role of apoptosis in hypoxic/ischemic damage in the kidney. Semin Nephrol 23(6):511–521PubMedCrossRefGoogle Scholar
  18. 18.
    Selby NM, Kolhe NV, McIntyre CW, Monaghan J, Lawson N, Elliott D, Packington R, Fluck RJ (2012) Defining the cause of death in hospitalised patients with acute kidney injury. PLoS One 7(11):e48580. doi: 10.1371/journal.pone.0048580 PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Brause M, Neumann A, Schumacher T, Grabensee B, Heering P (2003) Effect of filtration volume of continuous venovenous hemofiltration in the treatment of patients with acute renal failure in intensive care units. Crit Care Med 31(3):841. doi: 10.1097/01.ccm.0000054866.45509.d0 PubMedCrossRefGoogle Scholar
  20. 20.
    Uchino S, Bellomo R, Goldsmith D, Bates S, Ronco C (2006) An assessment of the RIFLE criteria for acute renal failure in hospitalized patients. Crit Care Med 34(7):1913–1917. doi: 10.1097/01.CCM.0000224227.70642.4F PubMedCrossRefGoogle Scholar
  21. 21.
    Wang HE, Muntner P, Chertow GM, Warnock DG (2012) Acute kidney injury and mortality in hospitalized patients. Am J Nephrol 35(4):349–355. doi: 10.1159/000337487 PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Woodrow G, Turney JH (1992) Cause of death in acute renal failure. Nephrol Dial Transpl 7(3):230–234Google Scholar
  23. 23.
    Jones DR, Lee HT (2008) Perioperative renal protection. Best Pract Res Clin Anaesthesiol 22(1):193. doi: 10.1016/j.bpa.2007.08.005 PubMedCrossRefGoogle Scholar
  24. 24.
    Bove T, Calabro MG, Landoni G, Aletti G, Marino G, Crescenzi G, Rosica C, Zangrillo A (2004) The incidence and risk of acute renal failure after cardiac surgery. J Cardiothorac Vasc Anesth 18(4):442. doi: 10.1053/j.jvca.2004.05.021 PubMedCrossRefGoogle Scholar
  25. 25.
    Schneider AG, Eastwood GM, Seevanayagam S, Matalanis G, Bellomo R (2012) A risk, injury, failure, loss, and end-stage renal failure score-based trigger for renal replacement therapy and survival after cardiac surgery. J Crit Care 27(5):488–495. doi: 10.1016/j.jcrc.2012.02.008 PubMedCrossRefGoogle Scholar
  26. 26.
    Cruz DN, Bolgan I, Perazella MA, Bonello M, de Cal M, Corradi V, Polanco N, Ocampo C, Nalesso F, Piccinni P, Ronco C, North East Italian Prospective Hospital Renal Outcome Survey on Acute Kidney Injury I (2007) North East Italian prospective hospital renal outcome survey on acute kidney injury (NEIPHROS-AKI): targeting the problem with the RIFLE criteria. Clin J Am Soc Nephrol CJASN 2(3):418–425. doi: 10.2215/CJN.03361006 CrossRefGoogle Scholar
  27. 27.
    Ali T, Khan I, Simpson W, Prescott G, Townend J, Smith W, Macleod A (2007) Incidence and outcomes in acute kidney injury: a comprehensive population-based study. J Am Soc Nephrol JASN 18(4):1292–1298. doi: 10.1681/ASN.2006070756 CrossRefGoogle Scholar
  28. 28.
    Chertow GM, Burdick E, Honour M, Bonventre JV, Bates DW (2005) Acute kidney injury, mortality, length of stay, and costs in hospitalized patients. J Am Soc Nephrol JASN 16(11):3365–3370. doi: 10.1681/ASN.2004090740 CrossRefGoogle Scholar
  29. 29.
    Manns B, Doig CJ, Lee H, Dean S, Tonelli M, Johnson D, Donaldson C (2003) Cost of acute renal failure requiring dialysis in the intensive care unit: clinical and resource implications of renal recovery. Crit Care Med 31(2):449. doi: 10.1097/01.ccm.0000045182.90302.b3 PubMedCrossRefGoogle Scholar
  30. 30.
    Kontodimopoulos N, Niakas D (2008) An estimate of lifelong costs and QALYs in renal replacement therapy based on patient’s life expectancy. Health Policy 86(1):85–96. doi: 10.1016/j.healthpol.2007.10.002 PubMedCrossRefGoogle Scholar
  31. 31.
    Chawla LS, Seneff MG, Nelson DR, Williams M, Levy H, Kimmel PL, Macias WL (2007) Elevated plasma concentrations of IL-6 and elevated APACHE II score predict acute kidney injury in patients with severe sepsis. Clin J Am Soc Nephrol 2(1):22–30. doi: 10.2215/cjn.02510706 PubMedCrossRefGoogle Scholar
  32. 32.
    Golab F, Kadkhodaee M, Zahmatkesh M, Hedayati M, Arab H, Schuster R, Zahedi K, Lentsch AB, Soleimani M (2009) Ischemic and non-ischemic acute kidney injury cause hepatic damage. Kidney Int 75(8):783–792. doi: 10.1038/ki.2008.683 PubMedCrossRefGoogle Scholar
  33. 33.
    Klein CL, Hoke TS, Fang WF, Altmann CJ, Douglas IS, Faubel S (2008) Interleukin-6 mediates lung injury following ischemic acute kidney injury or bilateral nephrectomy. Kidney Int 74(7):901–909. doi: 10.1038/ki.2008.314 PubMedCrossRefGoogle Scholar
  34. 34.
    Liangos O, Kolyada A, Tighiouart H, Perianayagam MC, Wald R, Jaber BL (2009) Interleukin-8 and acute kidney injury following cardiopulmonary bypass: a prospective cohort study. Nephron Clin Pract 113(3):C148–C154. doi: 10.1159/000232595 PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Serteser M, Koken T, Kahraman A, Yilmaz K, Akbulut G, Dilek ON (2002) Changes in hepatic TNF-alpha levels, antioxidant status, and oxidation products after renal ischemia/reperfusion injury in mice. J Surg Res 107(2):234–240. doi: 10.1006/jsre.2002.6513 PubMedCrossRefGoogle Scholar
  36. 36.
    Kelly KJ (2003) Distant effects of experimental renal ischemia/reperfusion injury. J Am Soc Nephrol 14(6):1549–1558. doi: 10.1097/01.asn.0000064946.94590.46 PubMedCrossRefGoogle Scholar
  37. 37.
    Grams ME, Rabb H (2012) The distant organ effects of acute kidney injury. Kidney Int 81(10):942–948. doi: 10.1038/ki.2011.241 PubMedCrossRefGoogle Scholar
  38. 38.
    Park SW, Chen SWC, Kim M, Brown KM, Kolls JK, D’Agati VD, Lee HT (2011) Cytokines induce small intestine and liver injury after renal ischemia or nephrectomy. Lab Invest 91(1):63–84. doi: 10.1038/labinvest.2010.151 PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    McColl BW, Rothwell NJ, Allan SM (2007) Systemic inflammatory stimulus potentiates the acute phase and CXC chemokine responses to experimental stroke and exacerbates brain damage via interleukin-1- and neutrophil-dependent mechanisms. J Neurosci 27(16):4403. doi: 10.1523/jneurosci.5376-06.2007 PubMedCrossRefGoogle Scholar
  40. 40.
    Huang M, Pang XH, Karalis K, Theoharides TC (2003) Stress-induced interleukin-6 release in mice is mast cell-dependent and more pronounced in apolipoprotein E knockout mice. Cardiovasc Res 59(1):241. doi: 10.1016/s0008-6363(03)00340-7 PubMedCrossRefGoogle Scholar
  41. 41.
    Simmons EM, Himmelfarb J, Sezer MT, Chertow GM, Mehta RL, Paganini EP, Soroko S, Freedman S, Becker K, Spratt D, Shyr Y, Ikizler TA, Grp PS (2004) Plasma cytokine levels predict mortality in patients with acute renal failure. Kidney Int 65(4):1357–1365. doi: 10.1111/j.1523-1755.2004.00512.x PubMedCrossRefGoogle Scholar
  42. 42.
    Parikh CR, Abraham E, Ancukiewicz M, Edelstein CL (2005) Urine IL-18 is an early diagnostic marker for acute kidney injury and predicts mortality in the intensive care unit. J Am Soc Nephrol JASN 16(10):3046–3052. doi: 10.1681/ASN.2005030236 CrossRefGoogle Scholar
  43. 43.
    Haase M, Bellomo R, Devarajan P, Schlattmann P, Haase-Fielitz A, Group NM-aI (2009) Accuracy of neutrophil gelatinase-associated lipocalin (NGAL) in diagnosis and prognosis in acute kidney injury: a systematic review and meta-analysis. Am J Kidney Dis Off J Natl Kidney Found 54(6):1012–1024. doi: 10.1053/j.ajkd.2009.07.020 CrossRefGoogle Scholar
  44. 44.
    Kale S, Karihaloo A, Clark PR, Kashgarian M, Krause DS, Cantley LG (2003) Bone marrow stem cells contribute to repair of the ischemically injured renal tubule. J Clin Investig 112(1):42–49. doi: 10.1172/JCI17856 PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Demirkilic U, Kuralay E, Yenicesu M, Caglar K, Oz BS, Cingoz F, Gunay C, Yildirim V, Ceylan S, Arslan M, Vural A, Tatar H (2004) Timing of replacement therapy for acute renal failure after cardiac surgery. J Card Surg 19(1):17–20PubMedCrossRefGoogle Scholar
  46. 46.
    Rabb H, Wang ZH, Nemoto T, Hotchkiss J, Yokota N, Soleimani M (2003) Acute renal failure leads to dysregulation of lung salt and water channels. Kidney Int 63(2):600–606. doi: 10.1046/j.1523-1755.2003.00753.x PubMedCrossRefGoogle Scholar
  47. 47.
    Hassoun HT, Lie ML, Grigoryev DN, Liu M, Tuder RM, Rabb H (2009) Kidney ischemia–reperfusion injury induces caspase-dependent pulmonary apoptosis. Am J Physiol Renal Physiol 297(1):F125–F137. doi: 10.1152/ajprenal.90666.2008 PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Wan Y, Xu J, Meng F, Bao Y, Ge Y, Lobo N, Vizcaychipi MP, Zhang D, Gentleman SM, Maze M, Ma D (2010) Cognitive decline following major surgery is associated with gliosis, beta-amyloid accumulation, and tau phosphorylation in old mice. Crit Care Med 38(11):2190–2198. doi: 10.1097/CCM.0b013e3181f17bcb PubMedCrossRefGoogle Scholar
  49. 49.
    Matthay MA, Zemans RL (2011) The acute respiratory distress syndrome: pathogenesis and treatment. Annu Rev Pathol 6:147–163. doi: 10.1146/annurev-pathol-011110-130158 PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Imai Y, Parodo J, Kajikawa O, de Perrot M, Fischer S, Edwards V, Cutz E, Liu M, Keshavjee S, Martin TR, Marshall JC, Ranieri VM, Slutsky AS (2003) Injurious mechanical ventilation and end-organ epithelial cell apoptosis and organ dysfunction in an experimental model of acute respiratory distress syndrome. J Am Med Assoc JAMA 289(16):2104–2112. doi: 10.1001/jama.289.16.2104 CrossRefGoogle Scholar
  51. 51.
    Troppmann C, Gillingham KJ, Benedetti E, Almond PS, Gruessner RWG, Najarian JS, Matas AJ (1995) Delayed graft function, acute rejection, and outcome after cadaver renal-transplantation—a multivariate-analysis. Transplantation 59(7):962. doi: 10.1097/00007890-199504150-00007 PubMedCrossRefGoogle Scholar
  52. 52.
    Grotz M, Ding J, Xu D, Huang Q, Regel G, Stalp M, Deitch EA (1996) The gut liberates proinflammatory cytokines after intestinal ischemia. In: 4th international congress on the immune consequences of trauma, shock and sepsis: mechanisms and therapeutic approachesGoogle Scholar
  53. 53.
    Sheridan BC, McIntyre RC, Moore EE, Meldrum DR, Agrafojo J, Fullerton DA (1997) Neutrophils mediate pulmonary vasomotor dysfunction in endotoxin-induced acute lung injury. J Trauma Inj Infect Crit Care 42(3):391. doi: 10.1097/00005373-199703000-00005 CrossRefGoogle Scholar
  54. 54.
    Kramer AA, Postler G, Salhab KF, Mendez C, Carey LC, Rabb H (1999) Renal ischemia reperfusion leads to macrophage-mediated increase in pulmonary vascular permeability. Kidney Int 55(6):2362–2367. doi: 10.1046/j.1523-1755.1999.00460.x PubMedCrossRefGoogle Scholar
  55. 55.
    Wan Y, Xu J, Ma D, Zeng Y, Cibelli M, Maze M (2007) Postoperative impairment of cognitive function in rats—a possible role for cytokine-mediated inflammation in the hippocampus. Anesthesiology 106(3):436–443. doi: 10.1097/00000542-200703000-00007 PubMedCrossRefGoogle Scholar
  56. 56.
    Hepburn TW, Hart TK, Horton VL, Sellers TS, Tobia LP, Urbanski JJ, Shi W, Davis CB (2001) Pharmacokinetics and tissue distribution of SB-251353, a novel human CXC chemokine, after intravenous administration to mice. J Pharmacol Exp Ther 298(3):886PubMedGoogle Scholar
  57. 57.
    Ma T, Liu Z (2013) Functions of aquaporin 1 and alpha-epithelial Na+ channel in rat acute lung injury induced by acute ischemic kidney injury. Int Urol Nephrol 45(4):1187–1196. doi: 10.1007/s11255-012-0355-1 PubMedCrossRefGoogle Scholar
  58. 58.
    Yoshidome H, Lentsch AB, Cheadle WG, Miller FN, Edwards MJ (1999) Enhanced pulmonary expression of CXC chemokines during hepatic ischemia/reperfusion-induced lung injury in mice. J Surg Res 81(1):33. doi: 10.1006/jsre.1998.5490 PubMedCrossRefGoogle Scholar
  59. 59.
    Kelly KJ (2006) Acute renal failure: much more than a kidney disease. Semin Nephrol 26(2):105–113. doi: 10.1016/j.semnephrol.2005.09.003 PubMedCrossRefGoogle Scholar
  60. 60.
    Kuhar CG, Budihna MV, Pleskovic RZ (2004) Mibefradil is more effective than verapamil for restoring post-ischemic function of isolated hearts of guinea pigs with acute renal failure. Eur J Pharmacol 488(1–3):137. doi: 10.1016/j.ejphar.2004.02.013 CrossRefGoogle Scholar
  61. 61.
    Kelly KJ, Williams WW, Colvin RB, Meehan SM, Springer TA, GutierrezRamos JC, Bonventre JV (1996) Intercellular adhesion molecule-1-deficient mice are protected against ischemic renal injury. J Clin Invest 97(4):1056. doi: 10.1172/jci118498 PubMedCentralPubMedCrossRefGoogle Scholar
  62. 62.
    Li X, Hassoun HT, Santora R, Rabb H (2010) Organ crosstalk: the role of the kidney (vol 15, pg 481, 2009). Curr Opin Crit Care 16 (2). doi: 10.1097/MCC.0b013e3283379b74
  63. 63.
    Ronco C, Cruz DN, Ronco F (2009) Cardiorenal syndromes. Curr Opin Crit Care 15(5):384. doi: 10.1097/MCC.0b013e32832e971b PubMedCrossRefGoogle Scholar
  64. 64.
    Bongartz LG, Cramer MJ, Doevendans PA, Joles JA, Braam B (2005) The severe cardiorenal syndrome: ‘Guyton revisited’. Eur Heart J 26(1). doi: 10.1093/eurheratj/ehi020
  65. 65.
    Kapadia SR (1999) Cytokines and heart failure. Cardiol Rev 7(4). doi: 10.1097/00045415-199907000-00011
  66. 66.
    Mann DL (1999) Mechanisms and models in heart failure—a combinatorial approach. Circulation 100(9):999PubMedCrossRefGoogle Scholar
  67. 67.
    Nian M, Lee P, Khaper N, Liu P (2004) Inflammatory cytokines and postmyocardial infarction remodeling. Circ Res 94(12):1543. doi: 10.1161/01.RES.0000130526.20854.fa PubMedCrossRefGoogle Scholar
  68. 68.
    Yassin MMI, Harkin DW, D’Sa A, Halliday MI, Rowlands BJ (2002) Lower limb ischemia-reperfusion injury triggers a systemic inflammatory response and multiple organ dysfunction. World J Surg 26(1):115PubMedCrossRefGoogle Scholar
  69. 69.
    Lawlor DK, Brock RW, Harris KS, Potter RF (1999) Cytokines contribute to early hepatic parenchymal injury and microvascular dysfunction after bilateral hindlimb ischemia. J Vasc Surg 30(3):533. doi: 10.1016/s0741-5214(99)70081-9 PubMedCrossRefGoogle Scholar
  70. 70.
    Sural S, Sharma RK, Gupta A, Sharma AP, Gulati S (2000) Acute renal failure associated with liver disease in India: etiology and outcome. Ren Fail 22(5):623. doi: 10.1081/jdi-100100903 PubMedCrossRefGoogle Scholar
  71. 71.
    Liu KD, Glidden DV, Eisner MD, Parsons PE, Ware LB, Wheeler A, Korpak A, Thompson BT, Chertow GM, Matthay MA, National Heart L, Blood Institute ANCTG (2007) Predictive and pathogenetic value of plasma biomarkers for acute kidney injury in patients with acute lung injury. Crit Care Med 35(12):2755–2761PubMedCentralPubMedCrossRefGoogle Scholar
  72. 72.
    Liano F, Pascual J, Gamez C, Gallego A, Bajo MA, Sicilia LS, Junco E, Verde E, Bernis C, Traver JA, Alcazar JM, Sanchez R, Oliet A, Hernando C, Portoles J, Barrientos A, Sanz C, Hernandez J, deSequera P, Caramelo C, Barrio V, Moreno F, Munoz MC, Giner V, Junquera E, Parra EG, Rodeles M (1996) Epidemiology of acute renal failure: a prospective, multicenter, community-based study. Kidney Int 50(3):811–818. doi: 10.1038/ki.1996.380 PubMedCrossRefGoogle Scholar
  73. 73.
    Deng JP, Kohda Y, Chiao H, Wang YQ, Hu XH, Hewitt SM, Miyaji T, McLeroy P, Nibhanupudy B, Li SJ, Star RA (2001) Interleukin-10 inhibits ischemic and cisplatin-induced acute renal injury. Kidney Int 60(6):2118. doi: 10.1046/j.1523-1755.2001.00043.x PubMedCrossRefGoogle Scholar
  74. 74.
    Kaden J, Priesterjahn R (2000) Increasing urinary IL-6 levels announce kidney graft rejection. Transpl Int 13(Suppl):1. doi: 10.1111/j.1432-2277.2000.tb02055.x Google Scholar
  75. 75.
    Hori O, Matsumoto M, Kuwabara K, Maeda Y, Ueda H, Ohtsuki T, Kinoshita T, Ogawa S, Stern DM, Kamada T (1996) Exposure of astrocytes to hypoxia reoxygenation enhances expression of glucose-regulated protein 78 facilitating astrocyte release of the neuroprotective cytokine interleukin 6. J Neurochem 66(3):973PubMedCrossRefGoogle Scholar
  76. 76.
    Brouns R, De Deyn PP (2004) Neurological complications in renal failure: a review. Clin Neurol Neurosurg 107(1):1–16. doi: 10.1016/j.clineuro.2004.07.012 PubMedCrossRefGoogle Scholar
  77. 77.
    Ding Y-F, Zhang X-X, Shi G-M, He R-R (2001) Renal ischemia enhances electrical activity and Fos protein expression of the rostral ventrolateral medullary neurons in rats. Shengli Xuebao 53(5):369Google Scholar
  78. 78.
    Gu J, Sun P, Zhao H, Watts HR, Sanders RD, Terrando N, Xia P, Maze M, Ma D (2011) Dexmedetomidine provides renoprotection against ischemia-reperfusion injury in mice. Crit Care 15(3):R153. doi: 10.1186/cc10283 PubMedCentralPubMedCrossRefGoogle Scholar
  79. 79.
    Kielian T, Barry B, Hickey WF (2001) CXC chemokine receptor-2 ligands are required for neutrophil-mediated host defense in experimental brain abscesses. J Immunol 166(7):4634PubMedCrossRefGoogle Scholar
  80. 80.
    Zwijnenburg PJG, Polfliet MMJ, Florquin S, van den Berg TK, Dijkstra CD, van Deventer SJH, Roord JJ, van der Poll T, van Furth AM (2003) CXC-chemokines KC and macrophage inflammatory protein-2 (MIP-2) synergistically induce leukocyte recruitment to the central nervous system in rats. Immunol Lett 85(1):1–4. doi: 10.1016/s0165-2478(02)00200-6 PubMedCrossRefGoogle Scholar
  81. 81.
    Hasselblatt M, Jeibmann A, Riesmeier B, Maintz D, Schaebitz W-R (2007) Granulocyte-colony stimulating factor (G-CSF) and G-CSF receptor expression in human ischemic stroke. Acta Neuropathol 113(1):45. doi: 10.1007/s00401-006-0152-y PubMedCrossRefGoogle Scholar
  82. 82.
    Sehara Y, Hayashi T, Deguchi K, Zhang H, Tsuchiya A, Yamashita T, Lukic V, Nagai M, Kamiya T, Abe K (2007) Decreased focal inflammatory response by G-CSF may improve stroke outcome after transient middle cerebral artery occlusion in rats. J Neurosci Res 85(10):2167. doi: 10.1002/jnr.21341 PubMedCrossRefGoogle Scholar
  83. 83.
    Parikh CR, Coca SG (2006) Acute renal failure in hematopoietic cell transplantation. Kidney Int 69(3):430–435. doi: 10.1038/sj.ki.5000055 PubMedCrossRefGoogle Scholar
  84. 84.
    Lopes JA, Jorge S, Goncalves S, Resina C, Silva S, de Almeida E, Abreu F, Lourenco F, Martins C, Lacerda JF, do Carmo JA, Prata MM (2008) Contemporary analysis of the influence of acute kidney injury (AKI) after myeloablative hematopoietic cell transplantation on long-term patient’s survival. Bone Marrow Transpl 42(2):139–141. doi: 10.1038/bmt.2008.97 CrossRefGoogle Scholar
  85. 85.
    Parikh CR, Yarlagadda SG, Storer B, Sorror M, Storb R, Sandmaier B (2008) Impact of acute kidney injury on long-term mortality after nonmyeloablative hematopoietic cell transplantation. Biol Blood Marrow Transpl 14(3):309–315. doi: 10.1016/j.bbmt.2007.12.492 CrossRefGoogle Scholar
  86. 86.
    Schrier RW, Parikh CR (2005) Comparison of renal injury in myeloablative autologous, myeloablative allogeneic and non-myeloablative allogeneic haematopoietic cell transplantation. Nephrol Dial Transpl 20(4):678–683. doi: 10.1093/ndt/gfh720 CrossRefGoogle Scholar
  87. 87.
    Duffield JS, Park KM, Hsiao LL, Kelley VR, Scadden DT, Ichimura T, Bonventre JV (2005) Restoration of tubular epithelial cells during repair of the postischemic kidney occurs independently of bone marrow-derived stem cells. J Clin Investig 115(7):1743–1755. doi: 10.1172/JCI22593 PubMedCentralPubMedCrossRefGoogle Scholar
  88. 88.
    Lange C, Togel F, Ittrich H, Clayton F, Nolte-Ernsting C, Zander AR, Westenfelder C (2005) Administered mesenchymal stem cells enhance recovery from ischemia/reperfusion-induced acute renal failure in rats. Kidney Int 68(4):1613–1617. doi: 10.1111/j.1523-1755.2005.00573.x PubMedCrossRefGoogle Scholar
  89. 89.
    Bi B, Schmitt R, Israilova M, Nishio H, Cantley LG (2007) Stromal cells protect against acute tubular injury via an endocrine effect. J Am Soc Nephrol JASN 18(9):2486–2496. doi: 10.1681/ASN.2007020140 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Rele Ologunde
    • 1
  • Hailin Zhao
    • 1
  • Kaizhi Lu
    • 2
  • Daqing Ma
    • 1
    Email author
  1. 1.Section of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College LondonChelsea and Westminster HospitalLondonUK
  2. 2.Department of Anesthesiology, Southwest HospitalThird Military Medical UniversityChongqingChina

Personalised recommendations