International Urology and Nephrology

, Volume 45, Issue 6, pp 1653–1659 | Cite as

Association between TNF-α −308G/A polymorphism and diabetic nephropathy risk: a meta-analysis

  • Yuliang Zhao
  • Jiqiao Yang
  • Ling Zhang
  • Zheng Li
  • Yingying Yang
  • Yi Tang
  • Ping FuEmail author
Nephrology - Original Paper



TNF-α −308G/A polymorphism has been implicated in the susceptibility of diabetic nephropathy, but studies have reported inconclusive results. The present study investigated the relationship between −308G/A polymorphism in the TNF-α gene and diabetic nephropathy risk by meta-analysis.


Data from PubMed, Embase, Ovid, Cochrane Library, China National Knowledge Infrastructure, Wanfang, VIP and China Biology Medicine disc databases were evaluated and analyzed. Statistical analysis was performed using RevMan 4.2 and Stata 10.0 software.


A total of 1,277 diabetic nephropathy cases and 1,740 controls in eight case-controlled studies were identified for data analysis. The results suggested that A allele carriers (GA + AA) may not have an altered risk of diabetic nephropathy when compared with homozygote GG carriers with boarder-line statistical significance (OR = 0.84, 95 % CI = 0.71–1.00, p = 0.05 for GA + AA vs. GG). However, in Asian subgroup analysis, the A allele variant was associated with a decreased diabetic nephropathy risk (OR = 0.69, 95 % CI = 0.51–0.94, p = 0.02 for GA + AA vs. GG).


Meta-analysis suggests that the A allele of TNF-α −308G/A polymorphism might be protective against diabetic nephropathy with ethnic selectivity. Future studies are needed to validate these findings.


TNF-α −308G/A polymorphism Gene Diabetic nephropathy Meta-analysis 


Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Grace BS, Clayton P, McDonald SP (2012) Increases in renal replacement therapy in Australia and New Zealand: understanding trends in diabetic nephropathy. Nephrology (Carlton) 17(1):76–84CrossRefGoogle Scholar
  2. 2.
    Zhuo L, Zou GM, Li WG, Lu JH, Ren WW (2013) Prevalence of diabetic nephropathy complicating non-diabetic renal disease among Chinese patients with type 2 diabetes mellitus. Eur J Med Res 18(1):4PubMedCrossRefGoogle Scholar
  3. 3.
    Baban B, Liu JY, Mozaffari MS (2012) Endoplasmic reticulum stress response and inflammatory cytokines in type 2 diabetic nephropathy: role of indoleamine 2, 3-dioxygenase and programmed death-1. Exp Mol Pathol. doi: 10.1016/j.yexmp.2012.1011.1004 Google Scholar
  4. 4.
    Lee SH, Lee TW, Ihm CG, Kim MJ, Woo JT, Chung JH (2005) Genetics of diabetic nephropathy in type 2 DM: candidate gene analysis for the pathogenic role of inflammation. Nephrology (Carlton) 10:S32–S36CrossRefGoogle Scholar
  5. 5.
    El-Sherbini SM, Shahen SM, Mosaad YM, Abdelgawad MS, Talaat RM (2013) Gene polymorphism of transforming growth factor-β1 in Egyptian patients with type 2 diabetes and diabetic nephropathy. Acta Biochim Biophys Sin 45(4):330–338Google Scholar
  6. 6.
    Kurashige M, Imamura M, Araki S, Suzuki D, Babazono T, Uzu T, Umezono T, Toyoda M, Kawai K, Imanishi M (2013) The influence of a single nucleotide polymorphism within CNDP1 on susceptibility to diabetic nephropathy in Japanese women with type 2 diabetes. PLoS ONE 8(1):e54064PubMedCrossRefGoogle Scholar
  7. 7.
    Lee IS, Lee JH, Kim HJ, Lee JM, Lee SK, Kim HS, Lee JM, Park KS, Ku BJ (2013) Novel ERBB receptor feedback inhibitor 1 (ERRFI1) +808 T/G polymorphism confers protective effect on diabetic nephropathy in a Korean population. Dis MarkersGoogle Scholar
  8. 8.
    Kaynar K, Ulusoy S, Ovali E, Vanizor B, Dikmen T, Gul S (2005) TGF-beta and TNF-alpha producing effects of losartan and amlodipine on human mononuclear cell culture. Nephrology (Carlton) 10(5):478–482CrossRefGoogle Scholar
  9. 9.
    Mekinian A, Tamouza R, Pavy S, Gestermann N, Ittah M, Mariette X, Miceli-Richard C (2011) Functional study of TNF-α promoter polymorphisms: literature review and meta-analysis. Eur Cytokine Netw 22(2):88–102PubMedGoogle Scholar
  10. 10.
    Chang WT, Wang YC, Chen CC, Zhang SK, Liu CH, Chang FH, Hsu LS (2012) The −308G/A of Tumor Necrosis Factor (TNF)-α and 825C/T of Guanidine Nucleotide Binding Protein 3 (GNB3) are Associated with the Onset of Acute Myocardial Infarction and Obesity in Taiwan. Int J Mol Sci 13(2):1846–1857PubMedCrossRefGoogle Scholar
  11. 11.
    Guzmán-Flores JM, Escalante M, Sánchez-Corona J, García-Zapién AG, Cruz-Quevedo EG, Muñoz-Valle JF, Moran-Moguel MC, Saldaña-Cruz AM, Flores-Martínez SE (2013) Association analysis between −308G/A and −238G/A TNF-alpha gene promoter polymorphisms and insulin resistance in Mexican women with gestational diabetes mellitus. J Investig Med 61(2):265–269PubMedGoogle Scholar
  12. 12.
    Yu ZY, Chen LS, Zhang LC, Zhou TB (2012) Meta-analysis of the relationship between ACE I/D gene polymorphism and end-stage renal disease in patients with diabetic nephropathy. Nephrology (Carlton) 17(5):480–487CrossRefGoogle Scholar
  13. 13.
    Wang Y, Wu CX, Tang JY, Chen ZE (2008) Relationship between tumor necrosis factor-α G-308A gene polymorphism and risk of nephropathy in obese Chinese type 2 diabetic patients. Biao Ji Mian Yi Fen Xi Yu Lin Chuang (Chinese) 4(15):71–75Google Scholar
  14. 14.
    Prasad P, Tiwari AK, Kumar KM, Ammini AC, Gupta A, Gupta R, Thelma BK (2007) Association of TGFβ1, TNFα, CCR2 and CCR5 gene polymorphisms in type-2 diabetes and renal insufficiency among Asian Indians. BMC Med Genet 8(1):20PubMedCrossRefGoogle Scholar
  15. 15.
    Lindholm E, Bakhtadze E, Cilio C, Agardh E, Groop L, Agardh CD (2008) Association between LTA, TNF and AGER polymorphisms and late diabetic complications. PLoS ONE 3(6):e2546PubMedCrossRefGoogle Scholar
  16. 16.
    Kung WJ, Lin CC, Liu SH, Chaung HC (2010) Association of interleukin-10 polymorphisms with cytokines in type 2 diabetic nephropathy. Diabetes Technol Ther 12(10):809–813PubMedCrossRefGoogle Scholar
  17. 17.
    Krayenbuehl PA, Wiesli P, Schmid M, Schmid C, Ehses JA, Hersberger M, Vetter W, Schulthess G (2007) TNF-alpha −308G >A polymorphism modulates cytokine serum concentrations and macrovascular complications in diabetic patients on aspirin. Exp Clin Endocrinol Diabetes 115(5):322–326PubMedCrossRefGoogle Scholar
  18. 18.
    Buraczynska K, Koziol-Montewka M, Majdan M, Tokarz A, Ksiazek A (2004) Genetic determination of TNF and myeloperoxidase production in dialyzed patients with diabetic nephropathy. Ren Fail 26(6):633–639PubMedCrossRefGoogle Scholar
  19. 19.
    Babel N, Gabdrakhmanova L, Hammer MH, Schoenemann C, Skrypnikov V, Poliak N, Volk HD, Reinke P (2006) Predictive value of cytokine gene polymorphisms for the development of end-stage renal disease. J Nephrol 19(6):802–807PubMedGoogle Scholar
  20. 20.
    Okada H, Fukui M, Tanaka M, Matsumoto S, Mineoka Y, Nakanishi N, Asano M, Yamazaki M, Hasegawa G, Nakamura N (2013) Visit-to-Visit blood pressure variability is a novel risk factor for the development and progression of diabetic nephropathy in patients with Type 2 diabetes. Diabetes careGoogle Scholar
  21. 21.
    Möllsten A, Vionnet N, Forsblom C, Parkkonen M, Tarnow L, Hadjadj S, Marre M, Parving HH, Groop PH (2011) A polymorphism in the angiotensin II type 1 receptor gene has different effects on the risk of diabetic nephropathy in men and women. Mol Genet Metab 103(1):66–70PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Yuliang Zhao
    • 1
  • Jiqiao Yang
    • 2
  • Ling Zhang
    • 1
  • Zheng Li
    • 3
  • Yingying Yang
    • 1
  • Yi Tang
    • 1
  • Ping Fu
    • 1
    Email author
  1. 1.Division of Nephrology, West China HospitalSichuan UniversityChengduChina
  2. 2.West China Medical SchoolSichuan UniversityChengduChina
  3. 3.West China School of StomatologySichuan UniversityChengduChina

Personalised recommendations