International Urology and Nephrology

, Volume 46, Issue 1, pp 255–260

Use of a polysulfone hemodialysis membrane may prevent recurrent posterior reversible encephalopathy syndrome in a patient undergoing hemodialysis

  • Akira Mima
  • Takeshi Matsubara
  • Shuichiro Endo
  • Taichi Murakami
  • Yasuki Hashimoto
Nephrology - Case Report

Abstract

A 71-year-old woman underwent hemodialysis (HD) treatment for chronic kidney disease. During HD, she developed headache, abnormalities in visual perception, and generalized convulsion. Brain magnetic resonance imaging (MRI) showed T2-hyperintensity lesions in the posterior lobe, and an electroencephalogram showed slow waves in all areas. Twenty days later, the T2-hyperintensity lesions had vanished. Furthermore, perfusion computed tomography (CT) and single-photon emission CT with N-isopropyl[123I]-p-iodoamphetamine (IMP-SPECT) showed no significant abnormalities. The patient was diagnosed with posterior reversible encephalopathy syndrome (PRES) because she displayed typical clinical symptoms and MRI findings. Although several antihypertensive and antiseizure medications were administered, the patient experienced recurrent PRES. Therefore, we used a polysulfone dialyzer to reduce the oxidative stress and inflammation while preserving vascular endothelial function. After use of a polysulfone dialyzer membrane, the patient had no PRES episodes during the clinical course. This is the first study to demonstrate that use of a polysulfone dialyzer membrane instead of a cellulose membrane may prevent recurrent PRES.

Keywords

Posterior reversible encephalopathy syndrome Hemodialysis Polysulfone dialyzer membrane Endothelial dysfunction Oxidative stress Inflammation 

References

  1. 1.
    Hinchey J, Chaves C, Appignani B, Breen J, Pao L et al (1996) A reversible posterior leukoencephalopathy syndrome. N Engl J Med 334:494–500PubMedCrossRefGoogle Scholar
  2. 2.
    Petrovic BD, Nemeth AJ, McComb EN, Walker MT (2011) Posterior reversible encephalopathy syndrome and venous thrombosis. Radiol Clin North Am 49:63–80PubMedCrossRefGoogle Scholar
  3. 3.
    Garg RK (2001) Posterior leukoencephalopathy syndrome. Postgrad Med J 77:24–28PubMedCrossRefGoogle Scholar
  4. 4.
    Racz A, Veresh Z, Lotz G, Bagi Z, Koller A (2010) Cyclooxygenase-2 derived thromboxane A(2) and reactive oxygen species mediate flow-induced constrictions of venules in hyperhomocysteinemia. Atherosclerosis 208:43–49PubMedCrossRefGoogle Scholar
  5. 5.
    Horvath B, Lenzser G, Benyo B, Nemeth T, Benko R et al (2010) Hypersensitivity to thromboxane receptor mediated cerebral vasomotion and CBF oscillations during acute NO-deficiency in rats. PLoS ONE 5:e14477PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Mezzano D, Pais EO, Aranda E, Panes O, Downey P et al (2001) Inflammation, not hyperhomocysteinemia, is related to oxidative stress and hemostatic and endothelial dysfunction in uremia. Kidney Int 60:1844–1850PubMedCrossRefGoogle Scholar
  7. 7.
    Stenvinkel P, Ketteler M, Johnson RJ, Lindholm B, Pecoits-Filho R et al (2005) IL-10, IL-6, and TNF-alpha: central factors in the altered cytokine network of uremia–the good, the bad, and the ugly. Kidney Int 67:1216–1233PubMedCrossRefGoogle Scholar
  8. 8.
    Satoh M, Yamasaki Y, Nagake Y, Kasahara J, Hashimoto M et al (2001) Oxidative stress is reduced by the long-term use of vitamin E-coated dialysis filters. Kidney Int 59:1943–1950PubMedCrossRefGoogle Scholar
  9. 9.
    Chu PL, Chiu YL, Lin JW, Chen SI, Wu KD (2008) Effects of low- and high-flux dialyzers on oxidative stress and insulin resistance. Blood Purif 26:213–220PubMedCrossRefGoogle Scholar
  10. 10.
    Kolb G, Nolting C, Eckle I, Muller T, Lange H et al (1991) The role of membrane contact in hemodialysis-induced granulocyte activation. Nephron 57:64–68PubMedCrossRefGoogle Scholar
  11. 11.
    Tayeb JS, Provenzano R, El-Ghoroury M, Bellovich K, Khairullah Q et al (2000) Effect of biocompatibility of hemodialysis membranes on serum albumin levels. Am J Kidney Dis 35:606–610PubMedCrossRefGoogle Scholar
  12. 12.
    Kawabata K, Nagake Y, Shikata K, Fukuda S, Nakazono H et al (1998) Soluble P-selectin is released from activated platelets in vivo during hemodialysis. Nephron 78:148–155PubMedCrossRefGoogle Scholar
  13. 13.
    Ay H, Buonanno FS, Schaefer PW, Le DA, Wang B et al (1998) Posterior leukoencephalopathy without severe hypertension: utility of diffusion-weighted MRI. Neurology 51:1369–1376PubMedCrossRefGoogle Scholar
  14. 14.
    Sweany JM, Bartynski WS, Boardman JF (2007) “Recurrent” posterior reversible encephalopathy syndrome: report of 3 cases–PRES can strike twice! J Comput Assist Tomogr 31:148–156PubMedCrossRefGoogle Scholar
  15. 15.
    Thaipisuttikul I, Phanthumchinda K (2005) Recurrent reversible posterior leukoencephalopathy in a patient with systemic lupus erythematosus. J Neurol 252:230–231PubMedCrossRefGoogle Scholar
  16. 16.
    Brouns R, De Deyn PP (2004) Neurological complications in renal failure: a review. Clin Neurol Neurosurg 107:1–16PubMedCrossRefGoogle Scholar
  17. 17.
    Ergun T, Lakadamyali H, Yilmaz A (2008) Recurrent posterior reversible encephalopathy syndrome in a hypertensive patient with end-stage renal disease. Diagn Interv Radiol 14:182–185PubMedGoogle Scholar
  18. 18.
    Naidu K, Moodley J, Corr P, Hoffmann M (1997) Single photon emission and cerebral computerised tomographic scan and transcranial Doppler sonographic findings in eclampsia. Br J Obstet Gynaecol 104:1165–1172PubMedCrossRefGoogle Scholar
  19. 19.
    Bartynski WS (2008) Posterior reversible encephalopathy syndrome, part 2: controversies surrounding pathophysiology of vasogenic edema. AJNR Am J Neuroradiol 29:1043–1049PubMedCrossRefGoogle Scholar
  20. 20.
    Vaughan CJ, Delanty N (2000) Hypertensive emergencies. Lancet 356:411–417PubMedCrossRefGoogle Scholar
  21. 21.
    Yan SD, Schmidt AM, Anderson GM, Zhang J, Brett J et al (1994) Enhanced cellular oxidant stress by the interaction of advanced glycation end products with their receptors/binding proteins. J Biol Chem 269:9889–9897PubMedGoogle Scholar
  22. 22.
    Rojas A, Romay S, Gonzalez D, Herrera B, Delgado R et al (2000) Regulation of endothelial nitric oxide synthase expression by albumin-derived advanced glycosylation end products. Circ Res 86:E50–E54PubMedCrossRefGoogle Scholar
  23. 23.
    Zieman SJ, Melenovsky V, Kass DA (2005) Mechanisms, pathophysiology, and therapy of arterial stiffness. Arterioscler Thromb Vasc Biol 25:932–943PubMedCrossRefGoogle Scholar
  24. 24.
    Dou L, Bertrand E, Cerini C, Faure V, Sampol J et al (2004) The uremic solutes p-cresol and indoxyl sulfate inhibit endothelial proliferation and wound repair. Kidney Int 65:442–451PubMedCrossRefGoogle Scholar
  25. 25.
    Tumur Z, Niwa T (2009) Indoxyl sulfate inhibits nitric oxide production and cell viability by inducing oxidative stress in vascular endothelial cells. Am J Nephrol 29:551–557PubMedCrossRefGoogle Scholar
  26. 26.
    Muteliefu G, Enomoto A, Jiang P, Takahashi M, Niwa T (2009) Indoxyl sulphate induces oxidative stress and the expression of osteoblast-specific proteins in vascular smooth muscle cells. Nephrol Dial Transplant 24:2051–2058PubMedCrossRefGoogle Scholar
  27. 27.
    Boaz M, Smetana S, Weinstein T, Matas Z, Gafter U et al (2000) Secondary prevention with antioxidants of cardiovascular disease in endstage renal disease (SPACE): randomised placebo-controlled trial. Lancet 356:1213–1218PubMedCrossRefGoogle Scholar
  28. 28.
    Tepel M, van der Giet M, Statz M, Jankowski J, Zidek W (2003) The antioxidant acetylcysteine reduces cardiovascular events in patients with end-stage renal failure: a randomized, controlled trial. Circulation 107:992–995PubMedCrossRefGoogle Scholar
  29. 29.
    Scholze A, Rinder C, Beige J, Riezler R, Zidek W et al (2004) Acetylcysteine reduces plasma homocysteine concentration and improves pulse pressure and endothelial function in patients with end-stage renal failure. Circulation 109:369–374PubMedCrossRefGoogle Scholar
  30. 30.
    Koya D, Lee IK, Ishii H, Kanoh H, King GL (1997) Prevention of glomerular dysfunction in diabetic rats by treatment with d-alpha-tocopherol. J Am Soc Nephrol 8:426–435PubMedGoogle Scholar
  31. 31.
    Mima A, Ohshiro Y, Kitada M, Matsumoto M, Geraldes P et al (2011) Glomerular-specific protein kinase C-beta-induced insulin receptor substrate-1 dysfunction and insulin resistance in rat models of diabetes and obesity. Kidney Int 79:883–896PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Rask-Madsen C, King GL (2007) Mechanisms of disease: endothelial dysfunction in insulin resistance and diabetes. Nat Clin Pract Endocrinol Metab 3:46–56PubMedCrossRefGoogle Scholar
  33. 33.
    Paneni F, Osto E, Costantino S, Mateescu B, Briand S, et al. (2013) Deletion of the AP-1 transcription factor JunD induces oxidative stress and accelerates age-related endothelial dysfunction. CirculationGoogle Scholar
  34. 34.
    Lonn E, Yusuf S, Hoogwerf B, Pogue J, Yi Q et al (2002) Effects of vitamin E on cardiovascular and microvascular outcomes in high-risk patients with diabetes: results of the HOPE study and MICRO-HOPE substudy. Diabetes Care 25:1919–1927PubMedCrossRefGoogle Scholar
  35. 35.
    Yusuf S, Dagenais G, Pogue J, Bosch J, Sleight P (2000) Vitamin E supplementation and cardiovascular events in high-risk patients. The Heart Outcomes Prevention Evaluation Study Investigators. N Engl J Med 342:154–160PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Akira Mima
    • 1
    • 2
  • Takeshi Matsubara
    • 2
    • 3
  • Shuichiro Endo
    • 2
    • 3
  • Taichi Murakami
    • 1
    • 2
  • Yasuki Hashimoto
    • 2
    • 4
  1. 1.Department of Nephrology, Graduate School of Medicine, Institute of Health BiosciencesUniversity of TokushimaTokushimaJapan
  2. 2.Shizuoka City HospitalShizuokaJapan
  3. 3.Department of NephrologyKyoto University Graduate School of MedicineKyotoJapan
  4. 4.Hashimoto Medical ClinicAichiJapan

Personalised recommendations