International Urology and Nephrology

, Volume 44, Issue 5, pp 1539–1548

Urinary chemokines and anti-inflammatory molecules in renal transplanted patients as potential biomarkers of graft function: a prospective study

  • André Barreto Pereira
  • Antônio Lúcio Teixeira
  • Nilton Alves Rezende
  • Regina Maria Pereira
  • Débora Marques Miranda
  • Eduardo Araujo Oliveira
  • Mauro M. Teixeira
  • Ana Cristina Simões e Silva
Nephrology – Original Paper



Clinical- and histopathology-based scores are the limited predictors of allograft outcome. Thus, predictors of allograft survival still remain a challenge. This study aimed to evaluate the urinary levels of chemokines and anti-inflammatory molecules at 30, 90, and 300 days after renal transplantation and to further correlate these measurements to graft function.


Glomerular filtration rate (GFR) and urinary levels of MCP-1/CCL2, MIP-1α/CCL3, RANTES/CCL5, IL-8/CXCL8, IP-10/CXCL10, interleukin-1 receptor antagonist, soluble tumor necrosis factor receptor-1, and receptor-2 were determined at 30, 90, and 300 days after renal transplantation in 22 patients. Transplanted patients were also divided according to the type of donor (living donor, LD, n = 13 or deceased donor, DD, n = 9).


Urinary levels of all molecules, except MIP-1α/CCL3, remained unchanged at 30, 90, and 300 days after transplantation in our 22 patients. MIP-1α/CCL3 levels significantly reduced from 30 to 300 days and showed a negative correlation with GFR at 30 days. The comparison between LD and DD groups showed similar levels of all markers, except for MCP-1/CCL2, which presented higher values in LD than in DD at 30 days. sTNFR1 and MCP-1/CCL2 significantly reduced from 30 to 300 days in LD group, but only sTNFR2 concentrations at 30 days were negatively correlated with GFR at 300 days. On the other hand, in DD group, IL-1Ra concentrations at 30 and at 90 days were positively correlated with GFR at 300 days.


Urinary chemokine and anti-inflammatory molecules measurements may be a promising tool in the follow-up of renal transplanted patients.


Renal transplantation Urinary cytokines Renal function Renal survival 


  1. 1.
    Abecassis M, Bartlett ST, Collins AJ et al (2008) Kidney transplantation as primary therapy for end-stage renal disease: a National Kidney Foundation/Kidney Disease Outcomes Quality Initiative (NKF/KDOQITM) conference. Clin J Am Soc Nephrol 3:471–480PubMedCrossRefGoogle Scholar
  2. 2.
    Meier-Kriesche HU, Schold JD, Srinivas TR et al (2004) Lack of improvement in renal allograft survival despite a marked decrease in acute rejection rates over the most recent era. Am J Transpl 4:378–383CrossRefGoogle Scholar
  3. 3.
    Singh R, Srivastava P, Srivastava A et al (2010) Matrix metalloproteinase (MMP-9 and MMP-2) gene polymorphisms influence allograft survival in renal transplant recipients. Nephrol Dial Transpl 25:3393–3401CrossRefGoogle Scholar
  4. 4.
    Nankivell BJ, Borrows RJ, Fung CL et al (2003) The natural history of chronic allograft nephropathy. N Engl J Med 349:2326–2333PubMedCrossRefGoogle Scholar
  5. 5.
    Mikhalski D, Wissing KM, Ghisdal L et al (2008) Cold ischemia is a major determinant of acute rejection and renal graft survival in the modern era of immunosuppression. Transplantation 85:S3–S9PubMedCrossRefGoogle Scholar
  6. 6.
    Goldfarb-Rumyantzev AS, Naiman N (2010) Genetic predictors of acute renal transplant rejection. Nephrol Dial Transpl 25:1039–1047CrossRefGoogle Scholar
  7. 7.
    Dallman MJ (1995) Cytokines and transplantation: Th1/Th2 regulation of the immune response to solid organ transplants in the adult. Curr Opin Immunol 7:632–638PubMedCrossRefGoogle Scholar
  8. 8.
    Hu H, Aizenstein BD, Puchalski A et al (2004) Elevation of CXCR3-binding chemokines in urine indicates acute renal-allograft dysfunction. Am J Transpl 4:432–437CrossRefGoogle Scholar
  9. 9.
    Hauser IA, Spiegler S, Kiss E et al (2005) Prediction of acute renal allograft rejection by urinary monokine induced by IFN-gamma (MIG). J Am Soc Nephrol 16:1849–1858PubMedCrossRefGoogle Scholar
  10. 10.
    Woltman AM, de Fijter JW, van der Kooij SW et al (2005) MIP-3alpha/CCL20 in renal transplantation and its possible involvement as dendritic cell chemoattractant in allograft rejection. Am J Transpl 5:2114–2125CrossRefGoogle Scholar
  11. 11.
    Tatapudi RR, Muthukumar T, Dadhania D et al (2004) Noninvasive detection of renal allograft inflammation by measurements of mRNA for IP-10 and CXCR3 in urine. Kidney Int 65:2390–2397PubMedCrossRefGoogle Scholar
  12. 12.
    Yamada K, Hatakeyama E, Arita S et al (2003) Prediction of chronic renal allograft dysfunction from evaluations of TGFBeta1 and the renin-angiotensin system. Clin Exp Nephrol 7:238–242PubMedCrossRefGoogle Scholar
  13. 13.
    Teppo AM, Honkanen E, Finne P et al (2004) Increased urinary excretion of alpha1-microglobulin at 6 months after transplantation is associated with urinary excretion of transforming growth factor-beta1 and indicates poor long-term renal outcome. Transplantation 78:719–724PubMedCrossRefGoogle Scholar
  14. 14.
    Womer KL, Kaplan B (2009) Recent developments in kidney transplantation—a critical assessment. Am J Transpl 9:1265–1271CrossRefGoogle Scholar
  15. 15.
    Cockcroft DW, Gault MH (1976) Prediction of creatinine clearance from serum creatinine. Nephron 16:31–41PubMedCrossRefGoogle Scholar
  16. 16.
    Souto MF, Teixeira AL, Russo RC et al (2008) Immune mediators in idiopathic nephrotic syndrome: evidence for a relation between interleukin 8 and proteinuria. Pediatr Res 64:637–642PubMedCrossRefGoogle Scholar
  17. 17.
    Vasconcelos MA, Bouzada MC, Silveira KD et al (2011) Urinary levels of TGF beta-1 and of cytokines in patients with prenatally detected nephrouropathies. Pediatr Nephrol 26:739–747PubMedCrossRefGoogle Scholar
  18. 18.
    Obeidat MA, Luyckx VA, Grebe SO et al (2011) Post-transplant nuclear renal scans correlate with renal injury biomarkers and early allograft outcomes. Nephrol Dial Transpl 26:3038–3045CrossRefGoogle Scholar
  19. 19.
    Furness PN, Philpott CM, Chorbadjian MT et al (2003) Protocol biopsy of the stable renal transplant: a multicenter study of methods and complication rates. Transplantation 76:969–973PubMedCrossRefGoogle Scholar
  20. 20.
    Bellomo R, Kellum JA, Ronco C (2004) Defining acute renal failure: physiological principles. Intensive Care Med 30:33–37PubMedCrossRefGoogle Scholar
  21. 21.
    Devarajan P (2007) Emerging biomarkers of acute kidney injury. Contrib Nephrol 156:203–212PubMedCrossRefGoogle Scholar
  22. 22.
    Kozakowski N, Regele H (2009) Biopsy diagnostics in renal allograft rejection: from histomorphology to biological function. Transpl Int 22:945–953PubMedCrossRefGoogle Scholar
  23. 23.
    Perico N, Cattaneo D, Sayegh MH et al (2004) Delayed graft function in kidney transplantation. Lancet 364:1814–1827PubMedCrossRefGoogle Scholar
  24. 24.
    Cardoni RL, Prigoshin N, Tambutti ML et al (2005) Regulatory cytokines in the response to the allogeneic renal transplant. Medicina (B Aires) 65:54–62Google Scholar
  25. 25.
    Abbas AK, Lichtman AH (2003) Cytokines. In: Abbas AK, Lichtman AH (eds) Cellular and molecular immunology, 1st edn. Saunders W.B, St Louis, pp 243–274Google Scholar
  26. 26.
    Baer PC, Koziolek M, Fierlbeck W et al (2005) CC-chemokine RANTES is increased in serum and urine in the early post-transplantation period of human renal allograft recipients. Kidney Blood Press Res 28:48–54PubMedCrossRefGoogle Scholar
  27. 27.
    Kotsch K, Mashreghi MF, Bold G et al (2004) Enhanced granulysin mRNA expression in urinary sediment in early and delayed acute renal allograft rejection. Transplantation 77:1866–1875PubMedCrossRefGoogle Scholar
  28. 28.
    Oliveira JG, Xavier P, Neto S et al (1997) Monocytes-macrophages and cytokines/chemokines in fine-needle aspiration biopsy cultures: enhanced interleukin-1 receptor antagonist synthesis in rejection-free kidney transplant patients. Transplantation 63:1751–1756PubMedCrossRefGoogle Scholar
  29. 29.
    Robertson H, Morley AR, Talbot D et al (2000) Renal allograft rejection: beta-chemokine involvement in the development of tubulitis. Transplantation 69:684–687PubMedCrossRefGoogle Scholar
  30. 30.
    Sakai N, Wada T, Furuichi K et al (2002) p38 MAPK phosphorylation and NF-kappa B activation in human crescentic glomerulonephritis. Nephrol Dial Transpl 17:998–1004CrossRefGoogle Scholar
  31. 31.
    Citterio F, Pozzetto U, Romagnoli J et al (2004) Plasma levels of transforming growth factor-beta1 in renal transplant recipients receiving different immunosuppressive regimens. Transpl Proc 36:698–699CrossRefGoogle Scholar
  32. 32.
    Smith SD, Wheeler MA, Lorber MI et al (2000) Temporal changes of cytokines and nitric oxide products in urine from renal transplant patients. Kidney Int 58:829–837PubMedCrossRefGoogle Scholar
  33. 33.
    Grandaliano G, Gesualdo L, Ranieri E, Monno R, Stallone G, Schena FP (1997) Monocyte chemotactic peptide-1 expression and monocyte infiltration in acute renal transplant rejection. Transplantation 63:414–420PubMedCrossRefGoogle Scholar
  34. 34.
    Prodjosudjadi W, Daha MR, Gerritsma JSJ et al (1996) Increased urinary excretion of monocyte chemoattractant protein-1 during acute renal allograft rejection. Nephrol Dial Transpl 11:1096–1103CrossRefGoogle Scholar
  35. 35.
    Dubinski B, Boratynska M, Kopec W, Szyber P, Patrzalek D, Klinger M (2008) Activated cells in urine and monocyte chemotactic peptide-1 (MCP-1)—sensitive rejection markers in renal graft recipients. Transpl Immunol 18:203–207PubMedCrossRefGoogle Scholar
  36. 36.
    Thorburn E, Kolesar L, Brabcova E et al (2009) CXC and CC chemokines induced in human renal epithelial cells by inflammatory cytokines. APMIS 117:477–487PubMedCrossRefGoogle Scholar
  37. 37.
    Christensen PJ, Rolfe MW, Standiford TJ et al (1993) Characterization of the production of monocyte chemoattractant protein-1 and IL-8 in an allogeneic immune response. J Immunol 151:1205–1213PubMedGoogle Scholar
  38. 38.
    Al-Lamki RS, Wang J, Skepper JN et al (2001) Expression of tumor necrosis factor receptors in normal kidney and rejecting renal transplants. Lab Invest 81:1503–1515PubMedGoogle Scholar
  39. 39.
    Al-Lamki RS, Wang J, Vandenabeele P et al (2005) TNFR1- and TNFR2-mediated signaling pathways in human kidney are cell type-specific and differentially contribute to renal injury. FASEB J 19:1637–1645PubMedCrossRefGoogle Scholar
  40. 40.
    Mengel M, Gwinner W, Schwarz A et al (2007) Infiltrates in protocol biopsies from renal allografts. Am J Transpl 7:356–365CrossRefGoogle Scholar
  41. 41.
    Mannon RB, Sundar SK, Sanfilippo FP et al (1993) Alterations in renal interleukin-1 production during kidney transplant rejection in the rat. The effects of high-dose methylprednisolone. Transplantation 56:1157–1162PubMedCrossRefGoogle Scholar
  42. 42.
    Kerr PG, Nikolic-Paterson DJ, Lan HY et al (1994) Deoxyspergualin suppresses local macrophage proliferation in rat renal allograft rejection. Transplantation 58:596–601PubMedCrossRefGoogle Scholar
  43. 43.
    Atkins RC (1995) Interleukin-1 in crescentic glomerulonephritis. Kidney Int 48:576–586PubMedCrossRefGoogle Scholar
  44. 44.
    Grone HJ, Weber C, Weber KS et al (1999) Met-RANTES reduces vascular and tubular damage during acute renal transplant rejection: blocking monocyte arrest and recruitment. FASEB J 13:1371–1383PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, B.V. 2012

Authors and Affiliations

  • André Barreto Pereira
    • 1
  • Antônio Lúcio Teixeira
    • 1
  • Nilton Alves Rezende
    • 1
  • Regina Maria Pereira
    • 2
  • Débora Marques Miranda
    • 3
  • Eduardo Araujo Oliveira
    • 3
  • Mauro M. Teixeira
    • 4
  • Ana Cristina Simões e Silva
    • 3
  1. 1.Departamento de Clínica Médica, Faculdade de MedicinaUniversidade Federal de Minas Gerais (UFMG)Belo HorizonteBrazil
  2. 2.Fundação Hospitalar do Estado de Minas GeraisBelo HorizonteBrazil
  3. 3.Departamento de Pediatria, Faculdade de MedicinaInstituto Nacional de Ciência e Tecnologia (INCT) de Medicina Molecular, Faculdade de Medicina—UFMGBelo HorizonteBrazil
  4. 4.Laboratório de Imunofarmacologia, Departamento de Bioquímica e ImunologiaInstituto de Ciências Biológicas—UFMGBelo HorizonteBrazil

Personalised recommendations