International Urology and Nephrology

, Volume 44, Issue 5, pp 1479–1486 | Cite as

Cinacalcet lowers FGF-23 level together with bone metabolism in hemodialyzed patients with secondary hyperparathyroidism

  • Tomasz Hryszko
  • Szymon Brzosko
  • Alicja Rydzewska-Rosolowska
  • Ewa Koc-Zorawska
  • Michal Mysliwiec
Nephrology – Original Paper

Abstract

Purpose

Secondary hyperparathyroidism (sHPT) is associated with elevated levels of FGF-23, which in turn are connected to adverse outcomes in ESRD patients. The relationship between FGF-23 and bone metabolism in patients with sHPT treated with cinacalcet has not been studied.

Methods

Thirty-four stable chronically hemodialyzed patients with sHPT were prospectively followed during the treatment with cinacalcet without any changes in concurrent vitamin D or phosphate binder dose. Blood samples were collected at the start and after 6 months of study. Levels of osteocalcin (OC), cross-linked C-telopeptide of type I collagen (CTX), and FGF-23 were measured.

Results

Eighteen patients finished the study. Levels of calcium, phosphate, and iPTH decreased during 6 months of treatment with cinacalcet. Serum level of FGF-23 decreased significantly (log FGF-23 from 7.58 ± 1.7 to 6.61 ± 1.7 pg/ml) (P < 0.001). Cinacalcet lowered the concentration of CTX from 3.1 ± 0.6 ng/ml to 2.6 ± 0.9 ng/ml (P < 0.05) and OC from 91.8 (41.5–558.6) to 70.3 (11.3–419.7) ng/ml (P < 0.05). The magnitude of change in FGF-23 concentration before and after treatment correlated significantly with suppression of osteoblasts’ function assessed by ΔOC (r = 0.5, P < 0.05) but not with changes in bone resorption marker ΔCTX.

Conclusions

Cinacalcet treatment of sHPT results in reduction of FGF-23 levels, probably due to the suppression of osteoblasts function.

Keywords

Bone metabolism Cinacalcet FGF-23 Hemodialysis Secondary hyperparathyroidism 

References

  1. 1.
    Nemeth EF, Steffey ME, Hammerland LG, Hung BC, van Wagenen BC, DelMar EG, Balandrin MF (1998) Calcimimetics with potent and selective activity on the parathyroid calcium receptor. Proc Natl Acad Sci USA 95(7):4040–4045PubMedCrossRefGoogle Scholar
  2. 2.
    Block GA, Martin KJ, de Francisco AL, Turner SA, Avram MM, Suranyi MG, Hercz G, Cunningham J, Abu-Alfa AK, Messa P, Coyne DW, Locatelli F, Cohen RM, Evenepoel P, Moe SM, Fournier A, Braun J, McCary LC, Zani VJ, Olson KA, Drueke TB, Goodman WG (2004) Cinacalcet for secondary hyperparathyroidism in patients receiving hemodialysis. N Engl J Med 350(15):1516–1525. doi:10.1056/NEJMoa031633350/15/1516[pii] PubMedCrossRefGoogle Scholar
  3. 3.
    Yano S, Suzuki K, Sumi M, Tokumoto A, Shigeno K, Himeno Y, Sugimoto T (2010) Bone metabolism after cinacalcet administration in patients with secondary hyperparathyroidism. J Bone Miner Metab 28(1):49–54. doi:10.1007/s00774-009-0102-6 PubMedCrossRefGoogle Scholar
  4. 4.
    Shigematsu T, Akizawa T, Uchida E, Tsukamoto Y, Iwasaki M, Koshikawa S (2009) Long-term cinacalcet HCl treatment improved bone metabolism in Japanese hemodialysis patients with secondary hyperparathyroidism. Am J Nephrol 29(3):230–236. doi:000156717[pii]10.1159/000156717 PubMedCrossRefGoogle Scholar
  5. 5.
    Lien YH, Silva AL, Whittman D (2005) Effects of cinacalcet on bone mineral density in patients with secondary hyperparathyroidism. Nephrol Dial Transplant 20(6):1232–1237. doi:gfh829[pii]10.1093/ndt/gfh829 PubMedCrossRefGoogle Scholar
  6. 6.
    Shimada T, Kakitani M, Yamazaki Y, Hasegawa H, Takeuchi Y, Fujita T, Fukumoto S, Tomizuka K, Yamashita T (2004) Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism. J Clin Invest 113(4):561–568. doi:10.1172/JCI19081 PubMedGoogle Scholar
  7. 7.
    Sitara D, Razzaque MS, Hesse M, Yoganathan S, Taguchi T, Erben RG, Juppner H, Lanske B (2004) Homozygous ablation of fibroblast growth factor-23 results in hyperphosphatemia and impaired skeletogenesis, and reverses hypophosphatemia in Phex-deficient mice. Matrix Biol 23(7):421–432. doi:S0945-053X(04)00115-5[pii]10.1016/j.matbio.2004.09.007 PubMedCrossRefGoogle Scholar
  8. 8.
    Liu S, Tang W, Zhou J, Stubbs JR, Luo Q, Pi M, Quarles LD (2006) Fibroblast growth factor 23 is a counter-regulatory phosphaturic hormone for vitamin D. J Am Soc Nephrol 17(5):1305–1315. doi:ASN.2005111185[pii]10.1681/ASN.2005111185 PubMedCrossRefGoogle Scholar
  9. 9.
    Antoniucci DM, Yamashita T, Portale AA (2006) Dietary phosphorus regulates serum fibroblast growth factor-23 concentrations in healthy men. J Clin Endocrinol Metab 91(8):3144–3149. doi:jc.2006-0021[pii]10.1210/jc.2006-0021 PubMedCrossRefGoogle Scholar
  10. 10.
    Samadfam R, Richard C, Nguyen-Yamamoto L, Bolivar I, Goltzman D (2009) Bone formation regulates circulating concentrations of fibroblast growth factor 23. Endocrinology 150(11):4835–4845. doi:en.2009-0472[pii]10.1210/en.2009-0472 PubMedCrossRefGoogle Scholar
  11. 11.
    Ibrahim S, Rashed L (2009) Serum fibroblast growth factor-23 levels in chronic haemodialysis patients. Int Urol Nephrol 41(1):163–169. doi:10.1007/s11255-008-9466-0 PubMedCrossRefGoogle Scholar
  12. 12.
    Gutierrez OM, Mannstadt M, Isakova T, Rauh-Hain JA, Tamez H, Shah A, Smith K, Lee H, Thadhani R, Juppner H, Wolf M (2008) Fibroblast growth factor 23 and mortality among patients undergoing hemodialysis. N Engl J Med 359(6):584–592. doi:359/6/584[pii]10.1056/NEJMoa0706130 PubMedCrossRefGoogle Scholar
  13. 13.
    Parker BD, Schurgers LJ, Brandenburg VM, Christenson RH, Vermeer C, Ketteler M, Shlipak MG, Whooley MA, Ix JH (2010) The associations of fibroblast growth factor 23 and uncarboxylated matrix Gla protein with mortality in coronary artery disease: the heart and soul study. Ann Intern Med 152(10):640–648. doi:152/10/640[pii]10.1059/0003-4819-152-10-201005180-00004 PubMedGoogle Scholar
  14. 14.
    Gutierrez OM, Januzzi JL, Isakova T, Laliberte K, Smith K, Collerone G, Sarwar A, Hoffmann U, Coglianese E, Christenson R, Wang TJ, de Filippi C, Wolf M (2009) Fibroblast growth factor 23 and left ventricular hypertrophy in chronic kidney disease. Circulation 119(19):2545–2552. doi:CIRCULATIONAHA.108.844506[pii]10.1161/CIRCULATIONAHA.108.844506 PubMedCrossRefGoogle Scholar
  15. 15.
    Jean G, Bresson E, Terrat JC, Vanel T, Hurot JM, Lorriaux C, Mayor B, Chazot C (2009) Peripheral vascular calcification in long-haemodialysis patients: associated factors and survival consequences. Nephrol Dial Transplant 24(3):948–955. doi:gfn571[pii]10.1093/ndt/gfn571 PubMedCrossRefGoogle Scholar
  16. 16.
    Kanbay M, Nicoleta M, Selcoki Y, Ikizek M, Aydin M, Eryonucu B, Duranay M, Akcay A, Armutcu F, Covic A (2010) Fibroblast growth factor 23 and fetuin A are independent predictors for the coronary artery disease extent in mild chronic kidney disease. Clin J Am Soc Nephrol 5(10):1780–1786. doi:CJN.02560310[pii]10.2215/CJN.02560310 PubMedCrossRefGoogle Scholar
  17. 17.
    Fliser D, Kollerits B, Neyer U, Ankerst DP, Lhotta K, Lingenhel A, Ritz E, Kronenberg F, Kuen E, Konig P, Kraatz G, Mann JF, Muller GA, Kohler H, Riegler P (2007) Fibroblast growth factor 23 (FGF23) predicts progression of chronic kidney disease: the mild to moderate kidney disease (MMKD) study. J Am Soc Nephrol 18(9):2600–2608. doi:ASN.2006080936[pii]10.1681/ASN.2006080936 PubMedCrossRefGoogle Scholar
  18. 18.
    Kazama JJ, Sato F, Omori K, Hama H, Yamamoto S, Maruyama H, Narita I, Gejyo F, Yamashita T, Fukumoto S, Fukagawa M (2005) Pretreatment serum FGF-23 levels predict the efficacy of calcitriol therapy in dialysis patients. Kidney Int 67(3):1120–1125. doi:KID178[pii]10.1111/j.1523-1755.2005.00178.x PubMedCrossRefGoogle Scholar
  19. 19.
    Nakanishi S, Kazama JJ, Nii-Kono T, Omori K, Yamashita T, Fukumoto S, Gejyo F, Shigematsu T, Fukagawa M (2005) Serum fibroblast growth factor-23 levels predict the future refractory hyperparathyroidism in dialysis patients. Kidney Int 67(3):1171–1178. doi:KID184[pii]10.1111/j.1523-1755.2005.00184.x PubMedCrossRefGoogle Scholar
  20. 20.
    Finch JL, Tokumoto M, Nakamura H, Yao W, Shahnazari M, Lane N, Slatopolsky E (2010) Effect of paricalcitol and cinacalcet on serum phosphate, FGF-23, and bone in rats with chronic kidney disease. Am J Physiol Renal Physiol 298(6):F1315–F1322. doi:00552.2009[pii]10.1152/ajprenal.00552.2009 PubMedCrossRefGoogle Scholar
  21. 21.
    Wetmore JB, Liu S, Krebill R, Menard R, Quarles LD (2010) Effects of cinacalcet and concurrent low-dose vitamin D on FGF23 levels in ESRD. Clin J Am Soc Nephrol 5(1):110–116. doi:CJN.03630509[pii]10.2215/CJN.03630509 PubMedCrossRefGoogle Scholar
  22. 22.
    Koizumi M, Komaba H, Nakanishi S, Fujimori A, Fukagawa M (2011) Cinacalcet treatment and serum FGF23 levels in haemodialysis patients with secondary hyperparathyroidism. Nephrol Dial Transplant. doi:gfr384[pii]10.1093/ndt/gfr384
  23. 23.
    Marie PJ (2010) The calcium-sensing receptor in bone cells: a potential therapeutic target in osteoporosis. Bone 46(3):571–576. doi:S8756-3282(09)01785-2[pii]10.1016/j.bone.2009.07.082 PubMedCrossRefGoogle Scholar
  24. 24.
    Lavi-Moshayoff V, Wasserman G, Meir T, Silver J, Naveh-Many T (2010) PTH increases FGF23 gene expression and mediates the high-FGF23 levels of experimental kidney failure: a bone parathyroid feedback loop. Am J Physiol Renal Physiol 299(4):F882–F889. doi:ajprenal.00360.2010[pii]10.1152/ajprenal.00360.2010 PubMedCrossRefGoogle Scholar
  25. 25.
    Wesseling-Perry K, Pereira RC, Sahney S, Gales B, Wang HJ, Elashoff R, Juppner H, Salusky IB (2011) Calcitriol and doxercalciferol are equivalent in controlling bone turnover, suppressing parathyroid hormone, and increasing fibroblast growth factor-23 in secondary hyperparathyroidism. Kidney Int 79(1):112–119. doi:ki2010352[pii]10.1038/ki.2010.352 PubMedCrossRefGoogle Scholar
  26. 26.
    Wetmore JB, Santos PW, Mahnken JD, Krebill R, Menard R, Gutta H, Quarles LD (2011) Elevated FGF23 levels are associated with impaired calcium-mediated suppression of PTH in ESRD. J Clin Endocrinol Metab 96(1):E57–E64. doi:jc.2010-1277[pii]10.1210/jc.2010-1277 PubMedCrossRefGoogle Scholar
  27. 27.
    Wesseling-Perry K, Pereira RC, Wang H, Elashoff RM, Sahney S, Gales B, Juppner H, Salusky IB (2009) Relationship between plasma fibroblast growth factor-23 concentration and bone mineralization in children with renal failure on peritoneal dialysis. J Clin Endocrinol Metab 94(2):511–517. doi:jc.2008-0326[pii]10.1210/jc.2008-0326 PubMedCrossRefGoogle Scholar
  28. 28.
    Malluche HH, Monier-Faugere MC, Wang G, Fraza OJ, Charytan C, Coburn JW, Coyne DW, Kaplan MR, Baker N, McCary LC, Turner SA, Goodman WG (2008) An assessment of cinacalcet HCl effects on bone histology in dialysis patients with secondary hyperparathyroidism. Clin Nephrol 69(4):269–278PubMedGoogle Scholar
  29. 29.
    Galitzer H, Ben-Dov IZ, Silver J, Naveh-Many T (2010) Parathyroid cell resistance to fibroblast growth factor 23 in secondary hyperparathyroidism of chronic kidney disease. Kidney Int 77(3):211–218. doi:ki2009464[pii]10.1038/ki.2009.464 PubMedCrossRefGoogle Scholar
  30. 30.
    Block GA, Zaun D, Smits G, Persky M, Brillhart S, Nieman K, Liu J, St Peter WL (2010) Cinacalcet hydrochloride treatment significantly improves all-cause and cardiovascular survival in a large cohort of hemodialysis patients. Kidney Int 78(6):578–589. doi:ki2010167[pii]0.1038/ki.2010.167 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, B.V. 2011

Authors and Affiliations

  • Tomasz Hryszko
    • 1
  • Szymon Brzosko
    • 1
  • Alicja Rydzewska-Rosolowska
    • 1
  • Ewa Koc-Zorawska
    • 1
  • Michal Mysliwiec
    • 1
  1. 1.Department of Nephrology and TransplantationMedical University of BialystokBialystokPoland

Personalised recommendations