Advertisement

International Urology and Nephrology

, Volume 42, Issue 1, pp 95–102 | Cite as

Up-regulation of microRNA in bladder tumor tissue is not common

  • Gang Wang
  • Honghe Zhang
  • Huadong He
  • Wenjuan Tong
  • Bin Wang
  • Guodong Liao
  • Zhaodian Chen
  • Caigan Du
Urology - Original Paper

Abstract

MicroRNAs (miRNAs) have recently been shown to down-regulate gene expression by targeting mRNA translation and to play a critical role in tumorigenesis; how they regulate bladder tumor development, particularly in patients, is, however, poorly understood. The difference in miRNA expression in a bladder tumor compared with healthy tissue from the same patients was examined using microRNA arrays in seven patients. Here, we showed that up-regulation of miRNA was not commonly found in this limited number of patients, and four miRNAs (miR-26a, miR-29c, miR-30c, miR-30e-5p) were down-regulated as a common marker in patients with a 1–3 grade of disease. Our data suggest that instead of up-regulation of carcinogenic miRNAs, loss of regulation of these miRNA may be critical for bladder tumor development in patients.

Keywords

Bladder cancer MicroRNA Gene expression 

Notes

Acknowledgments

The authors would like to thank Dr Guangdi Chen (Department of Dermatology and Skin Science, University of British Columbia) for reading the manuscript and editing the graphs, and Mr Robert H. Bell (Bioinformatics Group, Prostate Centre, Vancouver General Hospital) for his assistance with the analysis of miRNA expression profiles. This study was supported by a grant from the Hangzhou Science–Technology Development Program (No. 20043259) (Hangzhou, Zhejiang, P.R. China) (G. Wang) and by start-up funding from the University of British Columbia (C. Du).

References

  1. 1.
    Yang L, Parkin DM, Li LD, Chen YD, Bray F (2004) Estimation and projection of the national profile of cancer mortality in China: 1991–2005. Br J Cancer 90:2157–2166PubMedGoogle Scholar
  2. 2.
    Knowles MA (2006) Molecular subtypes of bladder cancer: Jekyll and Hyde or chalk and cheese? Carcinogenesis 27:361–373. doi: 10.1093/carcin/bgi310 CrossRefPubMedGoogle Scholar
  3. 3.
    Sobin L, Wittekind C (2002) UICC: TNM classification of malignant tumors, 6th edn. Wiley–Liss, New YorkGoogle Scholar
  4. 4.
    Takahashi R, Hashimoto T, Xu HJ et al (1991) The retinoblastoma gene functions as a growth and tumor suppressor in human bladder carcinoma cells. Proc Natl Acad Sci USA 88:5257–5261. doi: 10.1073/pnas.88.12.5257 CrossRefPubMedGoogle Scholar
  5. 5.
    Lamy A, Gobet F, Laurent M et al (2006) Molecular profiling of bladder tumors based on the detection of FGFR3 and TP53 mutations. J Urol 176:2686–2689. doi: 10.1016/j.juro.2006.07.132 CrossRefPubMedGoogle Scholar
  6. 6.
    Ambros V (2001) MicroRNAs: tiny regulators with great potential. Cell 107:823–826. doi: 10.1016/S0092-8674(01)00616-X CrossRefPubMedGoogle Scholar
  7. 7.
    Shivdasani RA (2006) MicroRNAs: regulators of gene expression and cell differentiation. Blood 108:3646–3653. doi: 10.1182/blood-2006-01-030015 CrossRefPubMedGoogle Scholar
  8. 8.
    Good L (2003) Translation repression by antisense sequences. Cell Mol Life Sci 60:854–861PubMedGoogle Scholar
  9. 9.
    Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297. doi: 10.1016/S0092-8674(04)00045-5 CrossRefPubMedGoogle Scholar
  10. 10.
    Cimmino A, Calin GA, Fabbri M et al (2005) miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA 102:13944–13949. doi: 10.1073/pnas.0506654102 CrossRefPubMedGoogle Scholar
  11. 11.
    Hwang HW, Mendell JT (2006) MicroRNAs in cell proliferation, cell death, and tumorigenesis. Br J Cancer 94:776–780. doi: 10.1038/sj.bjc.6603023 CrossRefPubMedGoogle Scholar
  12. 12.
    Tong AW, Nemunaitis J (2008) Modulation of miRNA activity in human cancer: a new paradigm for cancer gene therapy? Cancer Gene Ther 15:341–355. doi: 10.1038/cgt.2008.8 CrossRefPubMedGoogle Scholar
  13. 13.
    Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T (2002) Identification of tissue-specific microRNAs from mouse. Curr Biol 12:735–739. doi: 10.1016/S0960-9822(02)00809-6 CrossRefPubMedGoogle Scholar
  14. 14.
    Papagiannakopoulos T, Kosik KS (2008) MicroRNAs: regulators of oncogenesis and stemness. BMC Med 6:15. doi: 10.1186/1741-7015-6-15 CrossRefPubMedGoogle Scholar
  15. 15.
    Fabbri M, Croce CM, Calin GA (2008) MicroRNAs. Cancer J 14:1–6. doi: 10.1097/PPO.0b013e318164145e CrossRefPubMedGoogle Scholar
  16. 16.
    Sood P, Krek A, Zavolan M, Macino G, Rajewsky N (2006) Cell-type-specific signatures of microRNAs on target mRNA expression. Proc Natl Acad Sci USA 103:2746–2751. doi: 10.1073/pnas.0511045103 CrossRefPubMedGoogle Scholar
  17. 17.
    Dillhoff M, Wojcik SE, Bloomston M (2008) MicroRNAs in solid tumors. J Surg Res. doi: 10.1016/j.jss.2008.02.046
  18. 18.
    Gottardo F, Liu CG, Ferracin M et al (2007) Micro-RNA profiling in kidney and bladder cancers. Urol Oncol 25:387–392. doi: 10.1016/j.urolonc.2007.01.019 PubMedGoogle Scholar
  19. 19.
    Chen C, Ridzon DA, Broomer AJ et al (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33:e179. doi: 10.1093/nar/gni178 CrossRefPubMedGoogle Scholar
  20. 20.
    Akao Y, Nakagawa Y, Naoe T (2006) MicroRNAs 143 and 145 are possible common onco-microRNAs in human cancers. Oncol Rep 16:845–850PubMedGoogle Scholar
  21. 21.
    Fabbri M, Garzon R, Cimmino A et al (2007) MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci USA 104:15805–15810. doi: 10.1073/pnas.0707628104 CrossRefPubMedGoogle Scholar
  22. 22.
    Sengupta S, den Boon JA, Chen IH et al (2008) MicroRNA 29c is down-regulated in nasopharyngeal carcinomas, up-regulating mRNAs encoding extracellular matrix proteins. Proc Natl Acad Sci USA 105:5874–5878. doi: 10.1073/pnas.0801130105 CrossRefPubMedGoogle Scholar
  23. 23.
    Visone R, Pallante P, Vecchione A et al (2007) Specific microRNAs are downregulated in human thyroid anaplastic carcinomas. Oncogene 26:7590–7595. doi: 10.1038/sj.onc.1210564 CrossRefPubMedGoogle Scholar
  24. 24.
    Chang TC, Yu D, Lee YS et al (2008) Widespread microRNA repression by Myc contributes to tumorigenesis. Nat Genet 40:43–50. doi: 10.1038/ng.2007.30 CrossRefPubMedGoogle Scholar
  25. 25.
    Wong CF, Tellam RL (2008) MicroRNA-26a targets the histone methyltransferase enhancer of Zeste homolog 2 during myogenesis. J Biol Chem 283:9836–9843. doi: 10.1074/jbc.M709614200 CrossRefPubMedGoogle Scholar
  26. 26.
    Takamizawa J, Konishi H, Yanagisawa K et al (2004) Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 64:3753–3756. doi: 10.1158/0008-5472.CAN-04-0637 CrossRefPubMedGoogle Scholar
  27. 27.
    Akao Y, Nakagawa Y, Naoe T (2006) let-7 microRNA functions as a potential growth suppressor in human colon cancer cells. Biol Pharm Bull 29:903–906. doi: 10.1248/bpb.29.903 CrossRefPubMedGoogle Scholar
  28. 28.
    Mayr C, Hemann MT, Bartel DP (2007) Disrupting the pairing between let-7 and Hmga2 enhances oncogenic transformation. Science 315:1576–1579. doi: 10.1126/science.1137999 CrossRefPubMedGoogle Scholar
  29. 29.
    Johnson SM, Grosshans H, Shingara J et al (2005) RAS is regulated by the let-7 microRNA family. Cell 120:635–647. doi: 10.1016/j.cell.2005.01.014 CrossRefPubMedGoogle Scholar
  30. 30.
    Inamura K, Togashi Y, Nomura K et al (2007) let-7 microRNA expression is reduced in bronchioloalveolar carcinoma, a non-invasive carcinoma, and is not correlated with prognosis. Lung Cancer 58:392–396. doi: 10.1016/j.lungcan.2007.07.013 CrossRefPubMedGoogle Scholar
  31. 31.
    Zhu S, Si ML, Wu H, Mo YY (2007) MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). J Biol Chem 282:14328–14336. doi: 10.1074/jbc.M611393200 CrossRefPubMedGoogle Scholar
  32. 32.
    Lu Z, Liu M, Stribinskis V, Klinge CM, Ramos KS, Colburn NH, Li Y (2008) MicroRNA-21 promotes cell transformation by targeting the programmed cell death 4 gene. Oncogene 27:4373–4379. doi: 10.1038/onc.2008.72 CrossRefPubMedGoogle Scholar
  33. 33.
    Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob ST, Patel T (2007) MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology 133:647–658. doi: 10.1053/j.gastro.2007.05.022 CrossRefPubMedGoogle Scholar
  34. 34.
    Zhu S, Wu H, Wu F, Nie D, Sheng S, Mo YY (2008) MicroRNA-21 targets tumor suppressor genes in invasion and metastasis. Cell Res 18:350–359. doi: 10.1038/cr.2008.24 CrossRefPubMedGoogle Scholar
  35. 35.
    Tavazoie SF, Alarcón C, Oskarsson T et al (2008) Endogenous human microRNAs that suppress breast cancer metastasis. Nature 451:147–152. doi: 10.1038/nature06487 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, B.V. 2009

Authors and Affiliations

  • Gang Wang
    • 1
    • 2
  • Honghe Zhang
    • 3
  • Huadong He
    • 2
  • Wenjuan Tong
    • 2
  • Bin Wang
    • 2
  • Guodong Liao
    • 2
  • Zhaodian Chen
    • 1
  • Caigan Du
    • 4
    • 5
  1. 1.Department of Urology, The First Affiliated HospitalZhejiang University School of MedicineHangzhouPeople’s Republic of China
  2. 2.Division of Urology, and Genomics LaboratoryHangzhou First People’s HospitalHangzhouPeople’s Republic of China
  3. 3.Department of PathologyZhejiang University School of MedicineHangzhouPeople’s Republic of China
  4. 4.Department of Urologic SciencesThe University of British ColumbiaVancouverCanada
  5. 5.Jack Bell Research CentreVancouverCanada

Personalised recommendations