Advertisement

International Urology and Nephrology

, Volume 39, Issue 4, pp 1241–1250 | Cite as

Serum and urine cystatin C levels in children with post-pyelonephritic renal scarring: a pilot study

  • Hüray Islekel
  • Alper Soylu
  • Zekiye Altun
  • Uluç Yis
  • Mehmet Turkmen
  • Salih Kavukcu
Original Article

Abstract

Aim

We aimed to investigate in children with a history of acute pyelonephritis the influence of unilateral post-pyelonephritic renal scarring detected by DMSA scan on serum (SCysC) and urine cystatin C (UCysC) as well as upon other traditional markers of renal damage.

Methods

Children with DMSA proven pyelonephritis (n = 28) were grouped as either scar [+] (n = 19, unilateral renal scarring) or scar [−] (no scarring, n = 9). The scar [+] group was further divided into scar-1 (differential DMSA uptake, ΔDMSA ≤ 10%; n = 8) and scar-2 (ΔDMSA > 10%, n = 11) subgroups. SCysC, serum creatinine, urine NAG, microalbumin, protein, fractional sodium excretion (FENa), tubular phosphate reabsorption (TPR), and UCysC/Cr were evaluated in all patients.

Results

Neither SCysC nor UCysC were affected by age, height, and weight. scar [+] versus scar [−] groups and scar-1 versus scar-2 subgroups were not different with regard to all studied parameters. SCysC did not increase in children with post-pyelonephritic unilateral renal scarring. However, 11 children with slightly increased (>0.95 mg/l) SCysC levels in scar [+] group tended to have higher ΔDMSA, albeit not significantly. Furthermore, UCysC/Cr correlated well with urine microalbumin, NAG, and FENa in all children and the scar [+] group (P < 0.05).

Conclusion

SCysC and UCysC did not differ among pediatric patients with and without unilateral post-pyelonephritic renal scarring. However, ΔDMSA uptake between the two kidneys tended to be raised in children with SCysC levels higher than the reference ranges. Additionally, UCysC/Cr exhibits parallelism with tubular functions.

Keywords

DMSA Glomerular filtration rate Pyelonephritis Renal scarring Serum cystatin C Tubular functions Urinary cystatin C 

References

  1. 1.
    Chon CH, Lai FC, Shortliffe LM (2001) Pediatric urinary tract infections. Pediatr Clin North Am 48:1441–1459PubMedCrossRefGoogle Scholar
  2. 2.
    Orellana P, Baquedano P, Rangarajan V, Zhao JH, Eng ND, Fettich J et al (2004) Relationship between acute pyelonephritis, renal scarring, and vesicoureteral reflux. Results of a coordinated research project. Pediatr Nephrol 19:1122–1126PubMedCrossRefGoogle Scholar
  3. 3.
    Kovanlikaya A, Okkaya N, Cakmakci H, Özdogan Ö, Degirmenci B, Kavukcu S (2004) Comparison of MRI and renal cortical scintigraphy findings in childhood acute pyelonephritis: preliminary experience. Eur J Radiol 49:76–80PubMedCrossRefGoogle Scholar
  4. 4.
    Taskinen S, Ronnholm K (2005) Post-pyelonephritic renal scars are not associated with vesicoureteral reflux in children. J Urol 173:1345–1348PubMedCrossRefGoogle Scholar
  5. 5.
    Rushton HG (1997) The evaluation of acute pyelonephritis and renal scarring with technetium 99 m-dimercaptosuccinic acid renal scintigraphy: evolving concepts and future directions. Pediatr Nephrol 11:108–120PubMedCrossRefGoogle Scholar
  6. 6.
    Dharnidharka VR, Kwon C, Stevens G (2002) Serum cystatin C is superior to serum creatinine as a marker of kidney function: a meta-analysis. Am J Kidney Dis 40:221–226PubMedCrossRefGoogle Scholar
  7. 7.
    Abrahamson M, Olafsson I, Palsdottir A, Ulvsback M, Lundwall A, Jansson O et al (1990) Structure and expression of the human cystatin C gene. Biochem J 268:287–294PubMedGoogle Scholar
  8. 8.
    Jacobsson B, Lignelid H, Bergerheim US (1995) Transthyretin and cystatin C are catabolized in proximal tubular epithelial cells and the proteins are not useful as markers for renal cell carcinomas. Histopathology 26:559–564PubMedCrossRefGoogle Scholar
  9. 9.
    Grubb A, Simonsen O, Sturfelt G, Truedsson L, Thysell H (1985) Serum concentration of cystatin C, factor D and beta 2-microglobulin as a measure of glomerular filtration rate. Acta Med Scand 218:499–503PubMedCrossRefGoogle Scholar
  10. 10.
    Simonsen O, Grubb A, Thysell H (1985) The blood serum concentration of cystatin C (gamma-trace) as a measure of the glomerular filtration rate. Scand J Clin Lab Invest 45:97–101PubMedCrossRefGoogle Scholar
  11. 11.
    Mussap M, Plebani M (2004) Biochemistry and clinical role of human cystatin C. Crit Rev Clin Lab Sci 41:467–550PubMedCrossRefGoogle Scholar
  12. 12.
    Filler G, Bokenkamp A, Hofmann W, Le Bricon T, Martinez-Bru C, Grubb A (2005) Cystatin C as a marker of GFR-history, indications, and future research. Clin Biochem 38:1–8PubMedCrossRefGoogle Scholar
  13. 13.
    Rosenthal SH, Feldkamp T, Volbracht L, Kribben A (2004) Measurement of urinary cystatin C by particle-enhanced nephelometric immunoassay: precision, interferences, stability and reference range. Ann Clin Biochem 41:111–118CrossRefGoogle Scholar
  14. 14.
    Uchida K, Gotoh A (2002) Measurement of cystatin C and creatinine in the urine. Clin Chim Acta 323:121–128PubMedCrossRefGoogle Scholar
  15. 15.
    Lofberg H, Grubb AO (1979) Quantitaion of gamma-trace in human biological fluids: indications for production in the central nervous system. Scan J Clin Lab Invest 39:619–626Google Scholar
  16. 16.
    Kabanda A, Jadoul M, Lauwerys R, Bernard A, Van Ypersele de Sthiou C (1995) Low molecular weight proteinuria in Chinese herbs nephropathy. Kidney Int 48:1571–1576PubMedCrossRefGoogle Scholar
  17. 17.
    Kabanda A, Vandercam B, Bernard A, Lauwerys R, Van Ypersele de Sthiou C (1996) Low molecular weight proteinuria in human immunodeficiency virus infected patients. Am J Kidney Dis 27:803–808PubMedGoogle Scholar
  18. 18.
    Herget-Rosenthal S, Poppen D, Husing J, Marggraf G, Pietruck F, Jakob HG et al (2004) Prognostic value of tubular proteinuria and enzymuria in nonoliguric acute tubular necrosis. Clin Chem 50:552–558PubMedCrossRefGoogle Scholar
  19. 19.
    Gordon I (2001) Nuclear medicine. In: Fotter R (ed) Pediatric uroradiology. Springer, Berlin, pp 27–40Google Scholar
  20. 20.
    Lebowitz RL, Olbing H, Parkkulainen KV, Smellie JM, Tamminen-Mobius TE (1985) International system of radiographic grading of vesicoureteric reflux. International reflux study in children. Pediatr Radiol 15:105–109PubMedCrossRefGoogle Scholar
  21. 21.
    Hoberman A, Charron M, Hickey RW, Baskin M, Kearney DH, Wald ER (2003) Imaging studies after a first febrile urinary tract infection in young children. N Engl J Med 348:195–202PubMedCrossRefGoogle Scholar
  22. 22.
    Hellerstein S, Berenbom M, Erwin P, Wilson N, Di Maggio S (2004) The ratio of urinary cystatin C to urinary creatinine for detecting decreased GFR. Pediatr Nephrol 19:521–525PubMedCrossRefGoogle Scholar
  23. 23.
    Randers E, Krue S, Erlandsen EJ, Danielsen H, Hansen LG (1999) Reference interval for serum cystatin C in children. Clin Chem 45:1856–1858PubMedGoogle Scholar
  24. 24.
    Bokenkamp A, Domanetzki M, Zinck R, Schumann G, Byrd D, Brodehl J (1998) Cystatin C—a new marker of glomerular filtration rate in children independent of age and height. Pediatrics 101:875–881PubMedCrossRefGoogle Scholar
  25. 25.
    Grubb AO (2000) Cystatin C: properties and use as diagnostic marker. Adv Clin Chem 35:63–99PubMedCrossRefGoogle Scholar
  26. 26.
    Newman DJ, Thakkar H, Edwards RG, Wilkie M, White T, Grubb AO et al (1995) Serum cystatin C measured by automated immunoassay: a more sensitive marker of changes in GFR rather than serum creatinine. Kidney Int 47:312–318PubMedCrossRefGoogle Scholar
  27. 27.
    Filler G, Lepage N (2003) Should the Schwartz formula for estimation of GFR be replaced by cystatin C formula? Pediatr Nephrol 18:981–985PubMedCrossRefGoogle Scholar
  28. 28.
    Hoek FJ, Kemperman FAW, Krediet RT (2003) A comparison between cystatin C, plasma creatinine and the Cockcroft and Gault formula for the estimation of glomerular filtration rate. Nephrol Dial Transplant 18:2024–2031PubMedCrossRefGoogle Scholar
  29. 29.
    Schwartz GJ, Haycock GB, Spitzer A (1976) Plasma creatinine and urea concentration in children: normal values for age and sex. J Pediatr 88:828–830PubMedCrossRefGoogle Scholar
  30. 30.
    Arnello F, Ham HR, Tondeur M, Piepsz A (1999) Overall and single-kidney clearence in children with urinary tract infection and damaged kidneys. J Nucl Med 40:52–55PubMedGoogle Scholar
  31. 31.
    Goswami R, Bal CS, Tejaswi S, Punjabi GV, Kapil A, Kochupillai N (2001) Prevalence of urinary tract infection and renal scars in patients with diabetes mellitus. Diabetes Res Clin Pract 53:181–186PubMedCrossRefGoogle Scholar
  32. 32.
    Conti M, Zater M, Lallali K, Durrbach A, Moutereau S, Manivet P et al (2005) Absence of circadian variations in urine cystatin C allows its use on urinary samples. Clin Chem 51:272–273PubMedCrossRefGoogle Scholar
  33. 33.
    Kavukcu S, Soylu A, Turkmen M (2002) The clinical value of N-acetyl-ß-d-glucosaminidase levels in childhood age group. Acta Med Okayama 56:7–11PubMedGoogle Scholar
  34. 34.
    Miyakita H, Puri P (1994) Urinary levels of N-acetyl-beta-d-glucosaminidase: a simple marker for predicting tubular damage in higher grades of vesicoureteric reflux. Eur Urol 25:135–137PubMedGoogle Scholar
  35. 35.
    Karlén J, Linné T, Wikstad I, Aperia A (1996) Incidence of microalbuminuria in children with pyelonephritic scarring. Pediatr Nephrol 10:705–708PubMedCrossRefGoogle Scholar
  36. 36.
    Tullus K, Fituri O, Linné T, Escobar-Billing R, Wikstad I, Karlsson A et al (1994) Urine interleukin-6 and interleukin-8 in children with acute pyelonephritis, in relation to DMSA scintigraphy in the acute phase and at 1-year follow-up. Pediatr Radiol 24:513–515PubMedCrossRefGoogle Scholar
  37. 37.
    Agras PI, Derbent M, Ozcay F, Baskin E, Turkoglu S, Aldemir D et al (2005) Effect of congenital heart disease on renal function in childhood. Nephron Physiol 99:10–15CrossRefGoogle Scholar
  38. 38.
    Muller F, Bernard MA, Benkirane A, Ngo S, Lortat-Jacob S, Oury J et al (1999) Fetal urine cystatin C as a predictor of postnatal renal function in bilateral uropathies. Clin Chem 45:2292–2293PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Hüray Islekel
    • 1
  • Alper Soylu
    • 2
  • Zekiye Altun
    • 1
  • Uluç Yis
    • 2
  • Mehmet Turkmen
    • 2
  • Salih Kavukcu
    • 2
  1. 1.Department of BiochemistryDokuz Eylül University School of MedicineIzmirTurkey
  2. 2.Department of PediatricsDokuz Eylül University School of MedicineIzmirTurkey

Personalised recommendations