We establish the exact-order estimates for some approximating characteristics of the classes \( {\mathbbm{W}}_{p,\alpha}^r \) and \( {\mathbbm{B}}_{p,\theta}^r \) of periodic functions of one and many variables in the norm of the space *B*_{∞,1}.

This is a preview of subscription content, log in to check access.

## Access options

### Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price **includes VAT** for USA

### Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the **net price**. Taxes to be calculated in checkout.

## References

- 1.
A. S. Romanyuk and V. S. Romanyuk, “Approximating characteristics of the classes of periodic multivariate functions in the space

*B*_{∞,1}*,*”*Ukr. Mat. Zh.*,**71**, No. 2, 271–282 (2019);*English translation:**Ukr. Math. J.*,**71**, No. 2, 308–321 (2019). - 2.
D. Ding, V. N. Temlyakov, and T. Ullrich,

*Hyperbolic Cross Approximation*, Preprint arXiv: 1601.03978 v 3 [math. NA] 21 Apr. (2017). - 3.
V. S. Romanyuk, “Kolmogorov widths and entropy numbers in the Orlicz spaces with Luxembourg norm,”

*Ukr. Mat. Zh.*,**69**, No. 5, 682–694 (2017);*English translation:**Ukr. Math. J.*,**69**, No. 5, 796–810 (2017). - 4.
P. I. Lizorkin and S. M. Nikol’skii, “Spaces of functions of mixed smoothness from the decomposition point of view,”

*Tr. Mat. Inst. Akad. Nauk SSSR*,**187**, 143–161 (1989). - 5.
O. V. Besov, “Investigations of one family of function spaces in connection with embedding and extension theorems,”

*Tr. Mat. Inst. Akad. Nauk SSSR*,**60**, 42–61 (1961). - 6.
S. M. Nikol’skii, “Inequalities for entire functions of finite degree and their application to the theory of differentiable functions of many variables,”

*Tr. Mat. Inst. Akad. Nauk SSSR*,**38**, 244–278 (1951). - 7.
T. I. Amanov, “Representation and embedding theorems for the function spaces \( {S}_{p,\theta}^{(r)}B\left({\mathbb{R}}^n\right) \) and \( {S}_{p,\theta}^{(r)}B\left(0\le {x}_j\le 2\uppi; j=1,\dots, n\right) \)

*,*”*Tr. Mat. Inst. Akad. Nauk SSSR*,**77**, 5–34 (1965). - 8.
S. M. Nikol’skii,

*Approximation of Functions of Many Variables and Embedding Theorems*[in Russian], Nauka, Moscow (1969). - 9.
V. N. Temlyakov, “Approximation of functions with bounded mixed derivative”

*Tr. Mat. Inst. Akad. Nauk SSSR*,**178**, 1–112 (1986). - 10.
V. N. Temlyakov,

*Approximation of Periodic Functions*, Nova Science Publishers, New York (1993). - 11.
A. S. Romanyuk,

*Approximating Characteristics of Classes of Periodic Functions of Many Variables*[in Russian], Proc. of the Institute of Mathematics, Ukrainian National Academy of Sciences, Kyiv (2012). - 12.
V. N. Temlyakov, “Estimates for asymptotic characteristics of classes of functions with bounded mixed derivative or difference,”

*Tr. Mat. Inst. Akad. Nauk SSSR*,**189**, 138–168 (1989). - 13.
A. S. Romanyuk, “Entropy numbers and widths for the classes \( {B}_{p,\theta}^r \) of periodic functions of many variables,”

*Ukr. Mat. Zh.*,**68**, No. 10, 1403–1417 (2016);*English translation:**Ukr. Math. J.*,**68**, No. 10, 1620–1636 (2017). - 14.
K. Höllig, “Diameters of classes of smooth functions,” in:

*Quantitative Approximation*, Academic Press, New York (1980), pp. 163–176. - 15.
B. Carl, “Entropy numbers,

*s*-numbers, and eigenvalue problems,”*J. Funct. Anal.*,**41**, 290–306 (1981). - 16.
B. S. Kashin and V. N. Temlyakov, “On the estimate for approximating characteristics of classes of functions with bounded mixed derivative,”

*Mat. Zametki*,**58**, No. 6, 922–925 (1995). - 17.
V. N. Temlyakov, “An inequality for trigonometric polynomials and its application for estimating the Kolmogorov widths,”

*East J. Approxim.*,**2**, No. 1, 89–98 (1996). - 18.
A. S. Romanyuk, “Best trigonometric approximations of classes of periodic functions of many variables in a uniform metric,”

*Mat. Zametki*,**82**, No. 2, 247–261 (2007). - 19.
A. S. Romanyuk, “Approximations of the classes \( {B}_{p,\theta}^r \) of periodic functions of many variables by linear methods and the best approximations,”

*Mat. Sb.*,**195**, No. 2, 91–116 (2004). - 20.
A. S. Romanyuk, “Estimation of the entropy numbers and Kolmogorov widths for the Nikol’skii–Besov classes of periodic functions of many variables,”

*Ukr. Mat. Zh.*,**67**, No. 11, 1540–1556 (2015);*English translation:**Ukr. Math. J.*,**67**, No. 11, 1739–1757 (2016). - 21.
R. M. Trigub and E. S. Belinsky,

*Fourier Analysis and Approximation of Functions*, Kluwer Academic Publishers, Dordrecht (2004).

## Author information

## Additional information

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 71, No. 8, pp. 1102–1115, August, 2019.

## Rights and permissions

## About this article

### Cite this article

Romanyuk, A.S., Romanyuk, V.S. Estimation of Some Approximating Characteristics of the Classes of Periodic Functions of One and Many Variables.
*Ukr Math J* **71, **1257–1272 (2020). https://doi.org/10.1007/s11253-019-01711-x

Received:

Published:

Issue Date: