Advertisement

Estimation of Some Approximating Characteristics of the Classes of Periodic Functions of One and Many Variables

  • 2 Accesses

We establish the exact-order estimates for some approximating characteristics of the classes \( {\mathbbm{W}}_{p,\alpha}^r \) and \( {\mathbbm{B}}_{p,\theta}^r \) of periodic functions of one and many variables in the norm of the space B∞,1.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

References

  1. 1.

    A. S. Romanyuk and V. S. Romanyuk, “Approximating characteristics of the classes of periodic multivariate functions in the space B ,1,Ukr. Mat. Zh., 71, No. 2, 271–282 (2019); English translation:Ukr. Math. J., 71, No. 2, 308–321 (2019).

  2. 2.

    D. Ding, V. N. Temlyakov, and T. Ullrich, Hyperbolic Cross Approximation, Preprint arXiv: 1601.03978 v 3 [math. NA] 21 Apr. (2017).

  3. 3.

    V. S. Romanyuk, “Kolmogorov widths and entropy numbers in the Orlicz spaces with Luxembourg norm,” Ukr. Mat. Zh., 69, No. 5, 682–694 (2017); English translation:Ukr. Math. J., 69, No. 5, 796–810 (2017).

  4. 4.

    P. I. Lizorkin and S. M. Nikol’skii, “Spaces of functions of mixed smoothness from the decomposition point of view,” Tr. Mat. Inst. Akad. Nauk SSSR, 187, 143–161 (1989).

  5. 5.

    O. V. Besov, “Investigations of one family of function spaces in connection with embedding and extension theorems,” Tr. Mat. Inst. Akad. Nauk SSSR, 60, 42–61 (1961).

  6. 6.

    S. M. Nikol’skii, “Inequalities for entire functions of finite degree and their application to the theory of differentiable functions of many variables,” Tr. Mat. Inst. Akad. Nauk SSSR, 38, 244–278 (1951).

  7. 7.

    T. I. Amanov, “Representation and embedding theorems for the function spaces \( {S}_{p,\theta}^{(r)}B\left({\mathbb{R}}^n\right) \) and \( {S}_{p,\theta}^{(r)}B\left(0\le {x}_j\le 2\uppi; j=1,\dots, n\right) \),Tr. Mat. Inst. Akad. Nauk SSSR, 77, 5–34 (1965).

  8. 8.

    S. M. Nikol’skii, Approximation of Functions of Many Variables and Embedding Theorems [in Russian], Nauka, Moscow (1969).

  9. 9.

    V. N. Temlyakov, “Approximation of functions with bounded mixed derivative” Tr. Mat. Inst. Akad. Nauk SSSR, 178, 1–112 (1986).

  10. 10.

    V. N. Temlyakov, Approximation of Periodic Functions, Nova Science Publishers, New York (1993).

  11. 11.

    A. S. Romanyuk, Approximating Characteristics of Classes of Periodic Functions of Many Variables [in Russian], Proc. of the Institute of Mathematics, Ukrainian National Academy of Sciences, Kyiv (2012).

  12. 12.

    V. N. Temlyakov, “Estimates for asymptotic characteristics of classes of functions with bounded mixed derivative or difference,” Tr. Mat. Inst. Akad. Nauk SSSR, 189, 138–168 (1989).

  13. 13.

    A. S. Romanyuk, “Entropy numbers and widths for the classes \( {B}_{p,\theta}^r \) of periodic functions of many variables,” Ukr. Mat. Zh., 68, No. 10, 1403–1417 (2016); English translation:Ukr. Math. J., 68, No. 10, 1620–1636 (2017).

  14. 14.

    K. Höllig, “Diameters of classes of smooth functions,” in: Quantitative Approximation, Academic Press, New York (1980), pp. 163–176.

  15. 15.

    B. Carl, “Entropy numbers, s-numbers, and eigenvalue problems,” J. Funct. Anal., 41, 290–306 (1981).

  16. 16.

    B. S. Kashin and V. N. Temlyakov, “On the estimate for approximating characteristics of classes of functions with bounded mixed derivative,” Mat. Zametki, 58, No. 6, 922–925 (1995).

  17. 17.

    V. N. Temlyakov, “An inequality for trigonometric polynomials and its application for estimating the Kolmogorov widths,” East J. Approxim., 2, No. 1, 89–98 (1996).

  18. 18.

    A. S. Romanyuk, “Best trigonometric approximations of classes of periodic functions of many variables in a uniform metric,” Mat. Zametki, 82, No. 2, 247–261 (2007).

  19. 19.

    A. S. Romanyuk, “Approximations of the classes \( {B}_{p,\theta}^r \) of periodic functions of many variables by linear methods and the best approximations,” Mat. Sb., 195, No. 2, 91–116 (2004).

  20. 20.

    A. S. Romanyuk, “Estimation of the entropy numbers and Kolmogorov widths for the Nikol’skii–Besov classes of periodic functions of many variables,” Ukr. Mat. Zh., 67, No. 11, 1540–1556 (2015); English translation:Ukr. Math. J., 67, No. 11, 1739–1757 (2016).

  21. 21.

    R. M. Trigub and E. S. Belinsky, Fourier Analysis and Approximation of Functions, Kluwer Academic Publishers, Dordrecht (2004).

Download references

Author information

Correspondence to A. S. Romanyuk.

Additional information

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 71, No. 8, pp. 1102–1115, August, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Romanyuk, A.S., Romanyuk, V.S. Estimation of Some Approximating Characteristics of the Classes of Periodic Functions of One and Many Variables. Ukr Math J 71, 1257–1272 (2020). https://doi.org/10.1007/s11253-019-01711-x

Download citation