Advertisement

Ukrainian Mathematical Journal

, Volume 71, Issue 8, pp 1234–1256 | Cite as

The □B-Heat Equation on CR Manifolds of Finite Type with Comparable Levi Forms

  • L. K. HaEmail author
Article
  • 1 Downloads

We study the initial-value problems for the heat equations associated with the operator □b on compact CR manifolds of finite type. The critical component of our analysis is the condition called Dϵ(q) and introduced by K. D. Koenig [Amer. J. Math., 124, 129–197 (2002)]. Actually, it states that the min{q, n − 1 − q}th smallest eigenvalue of the Levi form is comparable with the largest eigenvalue of the Levi form.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Beals, P. C. Greiner, and N. K. Stanton, “The heat equation on a CR manifold,” J. Differential Geom., 20, 343–387 (1984).MathSciNetCrossRefGoogle Scholar
  2. 2.
    M. Christ, “Regularity properties of the \( {\overline{\partial}}_b \) equation on weakly pseudoconvex CR manifolds of dimension 3,” J. Amer. Math. Soc., 1, 587–646 (1988).MathSciNetzbMATHGoogle Scholar
  3. 3.
    S. C. Chen and M. C. Shaw, “Partial differential equations in several complex variables,” Studies in Advanced Mathematics, 19, American Mathematical Society, International Press (2001).Google Scholar
  4. 4.
    C. Fefferman, “On Kohn’s microlocalization of \( \overline{\partial} \) problem,” in: Modern Methods in Complex Analysis: Princeton Conf. in Honor of Gunning and Kohn, Eds T. Bloom, D. W. Catlin, J. P. D’Angelo, and Y. T. Siu, Princeton University Press (1995), pp. 119–134.Google Scholar
  5. 5.
    L. Hörmander, “Hypoelliptic second order differential equations,” Acta Math., 119, 147–171 (1967).MathSciNetCrossRefGoogle Scholar
  6. 6.
    K. D. Koenig, “On maximal Sobolev and Hölder estimates for tangential Cauchy–Riemann operator and boundary Laplacian,” Amer. J. Math., 124, 129–197 (2002).MathSciNetCrossRefGoogle Scholar
  7. 7.
    A. Nagel, Analysis and Geometry on Carnot–Caratheodory Spaces. http://www.math.wisCedu/nagel/2005Book.pdf
  8. 8.
    A. Nagel and E. M. Stein, “The □b-heat equation on pseudoconvex manifolds of finite type in ℂ2,” Math. Z., 238, 37–88 (2001).MathSciNetCrossRefGoogle Scholar
  9. 9.
    A. Nagel, E. M. Stein, and S. Wainger, “Balls and metrics defined by vector fields I: Basic properties,” Acta Math., 155, 103–147 (1985).MathSciNetCrossRefGoogle Scholar
  10. 10.
    G. Zampieri, “Complex analysis and CR geometry,” University Lecture Series, American Mathematical Society, Providence, 43 (2008).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.University of Sciences, Vietnam National UniversityHo Chi Minh CityVietnam

Personalised recommendations