Advertisement

Existence of Nonnegative Solutions for a Fractional Parabolic Equation in the Entire Space

  • 3 Accesses

We study the existence of nonnegative solutions of a parabolic problem \( \frac{\partial u}{\partial t}=-{\left(-\Delta \right)}^{\frac{\alpha }{2}}u+\frac{c}{{\left|x\right|}^{\alpha }}u \) in d × (0, T). Here, 0 < α < min(2, d), \( {\left(-\Delta \right)}^{\frac{\alpha }{2}} \) is the fractional Laplacian on d and u0 ∈ L2(d).

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

References

  1. 1.

    A. B. Amor and T. Kenzizi, “The heat equation for the Dirichlet fractional Laplacian with negative potentials: Existence and blow-up of nonnegative solutions,” Acta Math. Sin. (Engl. Ser.), 33, 981–995 (2017).

  2. 2.

    K. Bogdan and T. Byczkowski, “Potential theory of Schrödinger operator on bounded Lipschitz domains,” Stud. Math., 133, No. 1, 53–92 (1999).

  3. 3.

    Ali Beldi, Nedra Belhajrhouma, and Ali Ben Amor, “Pointwise estimates for the ground states of singular Dirichlet fractional Laplacian,” J. Phys. A, 46(44) (2013).

  4. 4.

    K. Bogdan, T. Byczkowski, T. Kulczycki, M. Ryznar, R. Song, and Z. Vondraček, Potential analysis of stable processes and its extensions,” Lect. Notes Math., 1980 (2009).

  5. 5.

    P. Baras and J. A. Goldstein, “The heat equation with a singular potential,” Trans. Amer. Math. Soc., 284, No. 1, 121–139 (1984).

  6. 6.

    P. Baras and J. A. Goldstein, “Remarks on the inverse square in quantum mechanics,” North-Holland Math. Stud., 92, 31–35 (1984).

  7. 7.

    R. Blumenthal and R. Getoor, “The asymptotic distribution of the eigenvalues for a class of Markov operators,” Pacific J. Math., 9, 399–408 (1959).

  8. 8.

    C. Berg and G. Forst, Potential Theory on Locally Compact Abelian Groups, Springer, New York (1975).

  9. 9.

    C. S. Kubrusly, Spectral Theory of Operators on Hilbert Spaces, Springer Sci. + Business Media, LLC (2012).

  10. 10.

    X. Cabré and Y. Martel, “Existence versus explosion instantanée pour des équations de la chaleur linéaires avec potentiel singulier,” C. R. Math. Acad. Sci. Paris, 329, No. 11, 973–978 (1999).

  11. 11.

    T. Kato, Perturbation Theory for linear operators, Springer, Berlin (1995).

  12. 12.

    J. A. Goldstein and Q. S. Zhang, “On a degenerate heat equation with a singular potential,” J. Funct. Anal., 186, 342–359 (2001).

  13. 13.

    K. Yosida, Functional Analysis, Springer, Berlin (1995).

Download references

Author information

Correspondence to T. Kenzizi.

Additional information

Published in Ukrains’kyi Matematychnyi Zhurnal, Vol. 71, No. 8, pp. 1064–1072, August, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kenzizi, T. Existence of Nonnegative Solutions for a Fractional Parabolic Equation in the Entire Space. Ukr Math J 71, 1214–1223 (2020) doi:10.1007/s11253-019-01708-6

Download citation