Bojanov–Naidenov Problem for Differentiable Functions on the Real Line and the Inequalities of Various Metrics
Article
First Online:
- 2 Downloads
For given r ∈ N, p, λ > 0 and any fixed interval [a, b] ⊂ R, we solve the extreme problem
$$ \underset{a}{\overset{b}{\int }}{\left|x(t)\right|}^q dt\to \sup, \kern0.5em q\ge p, $$
on a set of functions \( x\in {L}_{\infty}^r \) such that
$$ {\displaystyle \begin{array}{ccc}{\left\Vert {x}^{(r)}\right\Vert}_{\infty}\le 1,& {\left\Vert x\right\Vert}_{p,\updelta}\le {\left\Vert {\upvarphi \uplambda}_{,r}\right\Vert}_{p,\updelta, }& \delta \in \Big(0,\uppi /\uplambda \end{array}}, $$
where
\( {\displaystyle \begin{array}{cc}{\left\Vert x\right\Vert}_{p,\delta}:= \sup \left\{\left\Vert x\right\Vert {L}_{p\left[a,b\right]}:a,b\in \mathbf{R},\right.& \left.0<b-a\le \updelta \right\}\end{array}} \)
and φ⋌,r is a (2𝜋/λ)-periodic Euler spline of order r. In particular, we solve the same problem for the intermediate derivatives x(k), k=1, . . . , r−1, with q≥1. In addition, we prove the inequalities of various metrics for the quantities ||x||p,𝜹.
Preview
Unable to display preview. Download preview PDF.
References
- 1.N. P. Korneichuk, V. F. Babenko, V. A. Kofanov, and S. A. Pichugov, Inequalities for Derivatives and Their Applications [in Russian], Naukova Dumka, Kiev (2003).Google Scholar
- 2.V. F. Babenko, “Investigations of Dnepropetrovsk mathematicians related to inequalities for derivatives of periodic functions and their applications,” Ukr. Mat. Zh., 52, No. 1, 5–29 (2000); English translation: Ukr. Math. J., 52, No. 1, 8–28 (2000).CrossRefGoogle Scholar
- 3.M. K. Kwong and A. Zettl, Norm Inequalities for Derivatives and Differences, Springer, Berlin (1992).CrossRefGoogle Scholar
- 4.B. Bojanov and N. Naidenov, “An extension of the Landau–Kolmogorov inequality. Solution of a problem of Erdos,” J. Anal. Math., 78, 263–280 (1999).MathSciNetCrossRefGoogle Scholar
- 5.A. Pinkus and O. Shisha, “Variations on the Chebyshev and Lq theories of best approximation,” J. Approxim. Theory, 35, No. 2, 148–168 (1982).CrossRefGoogle Scholar
- 6.V. A. Kofanov, “On some extremal problems of different metrics for differentiable functions on the axis,” Ukr. Mat. Zh., 61, No. 6, 765–776 (2009); English translation: Ukr. Math. J., 61, No. 6, 908–922 (2009).MathSciNetCrossRefGoogle Scholar
- 7.V. A. Kofanov, “Some extremal problems various metrics and sharp inequalities of Nagy–Kolmogorov type,” East J. Approxim., 16, No 4, 313–334 (2010).MathSciNetzbMATHGoogle Scholar
- 8.V. A. Kofanov, “Sharp upper bounds of norms of functions and their derivatives on classes of functions with given comparison function,” Ukr. Mat. Zh., 63, No. 7, 969–984 (2011); English translation: Ukr. Math. J., 63, No. 7, 1118–1135 (2011).MathSciNetCrossRefGoogle Scholar
- 9.V. A. Kofanov, “Inequalities of different metrics for differentiable periodic functions,” Ukr. Mat. Zh., 67, No. 2, 202–212 (2015); English translation: Ukr. Math. J., 67, No. 2, 230–242 (2015).MathSciNetCrossRefGoogle Scholar
- 10.A. N. Kolmogorov, “On the inequalities between upper bounds of successive derivatives on an infinite interval,” in: Selected Works, Mathematics and Mechanics [in Russian], Nauka, Moscow (1985), pp. 252–263.Google Scholar
- 11.N. P. Korneichuk, V. F. Babenko, and A. A. Ligun, Extremal Properties of Polynomials and Splines [in Russian], Naukova Dumka, Kiev (1992).zbMATHGoogle Scholar
- 12.V. A. Kofanov, “Sharp inequalities of Bernstein and Kolmogorov type,” East. J. Approxim., 11, No. 2, 131–145 (2005).MathSciNetzbMATHGoogle Scholar
- 13.N. P. Korneichuk, A. A. Ligun, and V. G. Doronin, Approximations with Restrictions [in Russian], Naukova Dumka, Kiev (1982).Google Scholar
- 14.B. M. Levitan, Almost Periodic Functions [in Russian], Gostekhizdat, Moscow (1953).Google Scholar
- 15.H. Weyl, “Almost periodic invariant vector sets in a metric vector space,” Amer. J. Math., 71, No. 1, 178–205 (1949).MathSciNetCrossRefGoogle Scholar
- 16.V. F. Babenko and S. A. Selivanov, “On the Kolmogorov-type inequalities for periodic and nonperiodic functions,” in: Differential Equations and Their Applications [in Russian], Dnipropetrovs’k National University, Dnipropetrovs’k (1998), pp. 91–95.Google Scholar
- 17.V. A. Kofanov, “Inequalities for nonperiodic splines on the real axis and their derivatives,” Ukr. Mat. Zh., 66, No. 2, 216–225 (2014); English translation: Ukr. Math. J., 66, No. 2, 242–252 (2014).MathSciNetCrossRefGoogle Scholar
Copyright information
© Springer Science+Business Media, LLC, part of Springer Nature 2019