Advertisement

Ukrainian Mathematical Journal

, Volume 71, Issue 6, pp 853–868 | Cite as

Fine Spectra of Tridiagonal Toeplitz Matrices

  • H. BilgiçEmail author
  • M. Altun
Article
  • 4 Downloads

The fine spectra of n-banded triangular Toeplitz matrices and (2n+1)-banded symmetric Toeplitz matrices were computed in (M. Altun, Appl. Math. Comput., 217, 8044–8051 (2011)) and (M. Altun, Abstr. Appl. Anal., Article ID 932785 (2012)). As a continuation of these results, we compute the fine spectra of tridiagonal Toeplitz matrices. These matrices are, in general, neither triangular, nor symmetric.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. M. Akhmedov and F. Başar, “On spectrum of the Cesàro operator,” Proc. Inst. Math. Mech. Nat. Acad. Sci. Azerb., 19, 3–8 (2004).zbMATHGoogle Scholar
  2. 2.
    A. M. Akhmedov and F. Başar, “On the fine spectrum of the Cesàro operator in c 0,Math. J. Ibaraki Univ., 36, 25–32 (2004).MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    A. M. Akhmedov and S. R. El-Shabrawy, “On the fine spectrum of the operator Δa,b over the sequence space c,Comput. Math. Appl., 61, 2994–3002 (2011).MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    B. Altay and F. Başar, “On the fine spectrum of the generalized difference operator B(r, s) over the sequence spaces c 0 and c,Int. J. Math. Math. Sci., No. 18, 3005–3013 (2005).zbMATHCrossRefGoogle Scholar
  5. 5.
    M. Altun, “Fine spectra of tridiagonal symmetric matrices,” Int. J. Math. Math. Sci., Article ID 161209 (2011).Google Scholar
  6. 6.
    M. Altun, “On the fine spectra of triangular Toeplitz operators,” Appl. Math. Comput., 217, 8044–8051 (2011).MathSciNetzbMATHGoogle Scholar
  7. 7.
    M. Altun, “Fine spectra of symmetric Toeplitz operators,” Abstr. Appl. Anal., Article ID 932785 (2012).Google Scholar
  8. 8.
    M. Altun and V. Karakaya, “Fine spectra of lacunary matrices,” Comm. Math. Anal., 7, No. 1, 1–10 (2009).MathSciNetzbMATHGoogle Scholar
  9. 9.
    J. P. Cartlidge, Weighted Mean Matrices as Operators onp, Ph. D. Dissertation, Indiana Univ. (1978).Google Scholar
  10. 10.
    H. Furkan, H. Bilgiç, and B. Altay, “On the fine spectrum of the operator B(r, s, t) over c 0 and c,Comput. Math. Appl., 53, 989–998 (2007).MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    S. Goldberg, Unbounded Linear Operators: Theory and Applications, Dover Publications, New York (1985).zbMATHGoogle Scholar
  12. 12.
    M. Gonzàlez, “The fine spectrum of the Cesàro operator in p (1 < p < ∞),Arch. Math., 44, 355–358 (1985).MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    V. Karakaya and M. Altun, “Fine spectra of upper triangular double-band matrices,” J. Comput. Appl. Math., 234, 1387–1394 (2010).MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    E. Kreyszig, Introductory Functional Analysis with Applications, John Wiley & Sons, New York (1978).zbMATHGoogle Scholar
  15. 15.
    J. T. Okutoyi, “On the spectrum of C 1 as an operator on b𝓋,Common. Fac. Sci. Univ. Ank. Sér. A1. Math. Stat., 41, 197–207 (1992).MathSciNetzbMATHGoogle Scholar
  16. 16.
    J. B. Reade, “On the spectrum of the Cesàro operator,” Bull. Lond. Math. Soc., 17, 263–267 (1985).zbMATHCrossRefGoogle Scholar
  17. 17.
    B. E. Rhoades, “The fine spectra for weighted mean operators,” Pac. J. Math., 104, No. 1, 219–230 (1983).MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    B. E. Rhoades and M. Yildirim, “Spectra and fine spectra for factorable matrices,” Integral Equations Operator Theory, 53, 127–144 (2005).MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    P. D. Srivastava and S. Kumar, “Fine spectrum of the generalized difference operator Δv on sequence space 1,Thai J. Math., 8, No. 2, 7–19 (2010).MathSciNetGoogle Scholar
  20. 20.
    P. D. Srivastava and S. Kumar, “Fine spectrum of the generalized difference operatorΔu𝓋 on sequence space 1,Appl. Math. Comput., 218, No. 11, 6407–6414 (2012).MathSciNetzbMATHGoogle Scholar
  21. 21.
    R. B. Wenger, “The fine spectra of Hölder summability operators,” Indian J. Pure Appl. Math., 6, 695–712 (1975).MathSciNetzbMATHGoogle Scholar
  22. 22.
    A. Wilansky, “Summability through functional analysis,” North-Holland Math. Stud., 85 (1984).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Sütçü İmam UniversityKahramanmaraşTurkey
  2. 2.KayseriTurkey

Personalised recommendations