Ukrainian Mathematical Journal

, Volume 71, Issue 5, pp 812–818 | Cite as

Hardy’s and Miyachi’s Theorems for the First Hankel–Clifford Transform

  • M. El KassimiEmail author
  • S. Fahlaoui

We present an analog of Hardy’s and Miyachi’s theorems for the first Hankel–Clifford transform.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. A. Abilov and F. V. Abilova, “Approximation of functions by Fourier–Bessel sums,” Izv. Vyssh. Uchebn. Zaved. Mat., No. 8, 3–9 (2001).Google Scholar
  2. 2.
    J. J. Betancor, “The Hankel–Clifford transformation on certain spaces of ultradistributions,” Indian J. Pure Appl. Math., 20, No. 6, 583–603 (1989).MathSciNetzbMATHGoogle Scholar
  3. 3.
    M. Cowling and J. Price, “Generalizations of Heisenberg’s inequality,” Harmon. Anal.: Lect. Notes Math., Springer, Berlin, 992 (1983).Google Scholar
  4. 4.
    M. El Kassimi, “An L p− L q version of Morgan’s and Cowling–Price’s theorem for the first Hankel–Clifford transform,” Nonlin. Stud., 26, No. 1 (2019).Google Scholar
  5. 5.
    A. Gray, G. B. Matthews, and T. M. Macrobert, A Treatise on Bessel Functions and Their Applications to Physics, MacMillan, London (1952).Google Scholar
  6. 6.
    G. H. Hardy, “A theorem concerning Fourier transforms,” J. Lond. Math. Soc. (2), 8, 227–231 (1933).MathSciNetCrossRefGoogle Scholar
  7. 7.
    V. Havin and B. Jöricke, “The uncertainty principle in harmonic analysis,” Ser. Modern Surv. Math., 28 (1994).Google Scholar
  8. 8.
    N. N. Lebedev, Special Functions and Their Applications, Dover Publ., New York (1972).zbMATHGoogle Scholar
  9. 9.
    J. M. R. M’endez P’erez and M. M. Socas Robayna, “A pair of generalized Hankel–Clifford transformations and their applications,” J. Math. Anal. Appl., 154, No. 2, 543–557 (1991).MathSciNetCrossRefGoogle Scholar
  10. 10.
    S. P. Malgonde and S. R. Bandewar, “On the generalized Hankel–Clifford transformation of arbitrary order,” Proc. Indian Acad. Sci. Math. Sci., 110, No. 3, 293–304 (2000).MathSciNetCrossRefGoogle Scholar
  11. 11.
    A. Miyachi, “A generalization of the theorem of Hardy,” in: Harmon. Analysis. Semin. Izunagaoka, Shizuoka-Ken, Japan (1997), pp. 44–51.Google Scholar
  12. 12.
    A. Prasad, V. K. Singh, and M. M. Dixit, “Pseudo-differential operators involving Hankel–Clifford transformation,” Asian-Eur. J. Math., 5, No. 3, 1250040, 15 p. (2012).MathSciNetCrossRefGoogle Scholar
  13. 13.
    A. Sitaram and M. Sundari, “An analog of Hardy’s theorem for very rapidly decreasing functions on semisimple Lie groups,” Pacific J. Math., 177, 187–200 (1997).MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mathematics and Computer ScienceUniversity of Moulay IsmaïlMeknèsMorocco

Personalised recommendations