Advertisement

Ukrainian Mathematical Journal

, Volume 71, Issue 3, pp 470–494 | Cite as

Unicity Theorems with Truncated Multiplicities of Meromorphic Mappings in Several Complex Variables for Few Fixed Targets

  • P. H. Ha
  • S. D. QuangEmail author
Article
  • 4 Downloads

The purpose of our paper is twofold. Our first aim is to prove a uniqueness theorem for meromorphic mappings of ℂn into ℙN(ℂ) sharing 2N + 2 hyperplanes in the general position with truncated multiplicities, where all common zeros with multiplicities greater than a certain number do not need to be counted. Second, we consider the case of mappings sharing less than 2N +2 hyperplanes. These results improve some recent results.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Aihara, “Finiteness theorem for meromorphic mappings,” Osaka J. Math., 35, 593–616 (1998).MathSciNetzbMATHGoogle Scholar
  2. 2.
    Z. Chen and Q. Yan, “Uniqueness theorem of meromorphic mappings from ℂn into ℙN(ℂ) sharing 2N + 3 hyperplanes in ℙN(ℂ) regardless of multiplicities,” Int. J. Math., 20, 717–726 (2009).CrossRefGoogle Scholar
  3. 3.
    G. Dethloff and T. V. Tan, “Uniqueness theorems for meromorphic mappings with few hyperplanes,” Bull. Sci. Math., 133, 501–514 (2009).MathSciNetCrossRefGoogle Scholar
  4. 4.
    H. Fujimoto, “The uniqueness problem of meromorphic maps into the complex projective space,” Nagoya Math. J., 58, 1–23 (1975).MathSciNetCrossRefGoogle Scholar
  5. 5.
    H. Fujimoto, “Uniqueness problem with truncated multiplicities in value distribution theory,” Nagoya Math. J., 152, 131–152 (1998).MathSciNetCrossRefGoogle Scholar
  6. 6.
    H. Z. Cao and T. B. Cao, “Uniqueness problem for meromorphic mappings in several complex variables with few hyperplanes,” Acta Math. Sinica (Eng. Ser.), 31, 1327–1338 (2015).MathSciNetCrossRefGoogle Scholar
  7. 7.
    S. Ji, “Uniqueness problem without multiplicities in value distribution theory,” Pacific J. Math., 135, 323–348 (1988).MathSciNetCrossRefGoogle Scholar
  8. 8.
    R. Nevanlinna, “Einige Eideutigkeitssäte in der Theorie der meromorphen Funktionen,” Acta Math., 48, 367–391 (1926).MathSciNetCrossRefGoogle Scholar
  9. 9.
    J. Noguchi and T. Ochiai, “Introduction to geometric function theory in several complex variables,” in: Transl. Math. Monogr., 80, Amer. Math. Soc., Providence, RI (1990).Google Scholar
  10. 10.
    S. D. Quang, “Unicity problem of meromorphic mappings sharing few hyperplanes,” Ann. Polon. Math., 102, 255–270 (2011).MathSciNetCrossRefGoogle Scholar
  11. 11.
    L. Smiley, “Geometric conditions for unicity of holomorphic curves,” Contemp. Math., 25, 149–154 (1983).MathSciNetCrossRefGoogle Scholar
  12. 12.
    W. Stoll, “Introduction to value distribution theory of meromorphic maps,” in: Complex Analysis. Lecture Notes in Mathematics, 950 (1982), pp. 210–359.Google Scholar
  13. 13.
    W. Stoll, “Value distribution theory for meromorphic maps,” in: Aspects Math. E, Braunschweig, F. Vieweg (1985), 7.Google Scholar
  14. 14.
    D. D. Thai and S. D. Quang, “Uniqueness problem with truncated multiplicities of meromorphic mappings in several complex variables,” Int. J. Math., 17, 1223–1257 (2006).MathSciNetCrossRefGoogle Scholar
  15. 15.
    H. H. Pham, S. D. Quang, and D. T. Do, “Unicity theorems with truncated multiplicities of meromorphic mappings in several complex variables sharing small identical sets for moving targets,” Int. J. Math., 21, 1095–1120 (2010).MathSciNetCrossRefGoogle Scholar
  16. 16.
    Z.-H. Tu, “Uniqueness problem of meromorphic mappings in several complex variables for moving targets,” Tohoku Math. J. (2), 54, 567–579 (2002).MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Hanoi National University of EducationHanoiVietnam
  2. 2.Thang Long Institute of Mathematics and Applied SciencesHanoiVietnam

Personalised recommendations