Fredholm One-Dimensional Boundary-Value Problems with Parameters in Sobolev Spaces
For systems of linear differential equations on a compact interval, we analyze the dependence of the solutions of boundary-value problems in the Sobolev spaces \( {W}_{\infty}^n \) on a parameter ε. We establish a constructive criterion of continuous dependence of the solutions of these problems on the parameter ε for ε = 0. The rate of convergence of these solutions is determined.
Preview
Unable to display preview. Download preview PDF.
References
- 1.A. A. Boichuk and A. M. Samoilenko, Generalized Inverse Operators and Fredholm Boundary-Value Problems, VSP, Zeist–Boston (2004).CrossRefzbMATHGoogle Scholar
- 2.I. T. Kiguradze, Some Singular Boundary-Value Problems for Ordinary Differential Equations [in Russian], Tbilisi University, Tbilisi (1975).Google Scholar
- 3.I. T. Kiguradze, “Boundary-value problems for systems of ordinary differential equations,” in: VINITI [in Russian], 30 (1987), pp. 3–103.Google Scholar
- 4.T. I. Kodlyuk, V. A. Mikhailets, and N. V. Reva, “Limit theorems for one-dimensional boundary-value problems,” Ukr. Mat. Zh., 65, No. 1, 70–81 (2013); English translation: Ukr. Math. J., 65, No. 1, 77–90 (2013).Google Scholar
- 5.V. A. Mikhailets, O. B. Pelekhata, and N. V. Reva, “Limit theorems for the solutions of boundary-value problems,” Ukr. Mat. Zh., 70, No. 2, 216–223 (2018); English translation: Ukr. Math. J., 70, No. 2, 243–251 (2018).Google Scholar
- 6.V. A. Mikhailets and G. A. Chekhanova, “Limit theorem for general one-dimensional boundary-value problems,” J. Math. Sci., 204, No. 3, 333–342 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
- 7.E. V. Gnyp, T. I. Kodlyuk, and V. A. Mikhailets, “Fredholm boundary-value problems with parameter in Sobolev spaces,” Ukr. Mat. Zh., 67, No. 5, 584–591 (2015); English translation: Ukr. Math. J., 67, No. 5, 658–667 (2015).Google Scholar
- 8.T. I. Kodlyuk and V. A. Mikhailets, “Solutions of one-dimensional boundary-value problems with a parameter in Sobolev spaces,” J. Math. Sci., 190, No. 4, 589–599 (2013).MathSciNetCrossRefzbMATHGoogle Scholar
- 9.Y. V. Hnyp, V. A. Mikhailets, and A. A. Murach, “Parameter-dependent one-dimensional boundary-value problems in Sobolev spaces,” Electron. J. Different. Equat., No. 81 (2017).Google Scholar
- 10.V. A. Mikhailets, A. A. Murach, and V. O. Soldatov, “Continuity in a parameter of solutions to generic boundary-value problems,” Electron. J. Qual. Theory Different. Equat., No. 87 (2016).Google Scholar
- 11.O. M. Atlasiuk and V. A. Mikhailets, “Fredholm one-dimensional boundary-value problems in Sobolev spaces,” Ukr. Mat. Zh., 70, No. 10, 1324–1333 (2018).MathSciNetGoogle Scholar
Copyright information
© Springer Science+Business Media, LLC, part of Springer Nature 2019