Advertisement

Contact CR-Warped Product of Submanifolds of the Generalized Sasakian Space Forms Admitting a Nearly Trans-Sasakian Structure

  • M. A. Khan
Article
  • 1 Downloads

In the present paper, we apply Hopf’s lemma to the contact CR-warped product submanifolds of generalized Sasakian space forms admitting nearly trans-Sasakian structure and establish a characterization inequality for the existence of these types of warped products. The indicated inequality generalizes the inequalities obtained in [M. Atceken, Bull. Iranian Math. Soc., 39, No. 3, 415–429 (2013), M. Atceken, Collect. Math., 62, No. 1, 17–26 (2011), and S. Sular and C. Özgür, Turkish J. Math., 36, 485–497 (2012)]. Moreover, we also deduce another inequality for the squared norm of the second fundamental form in terms of warping functions. This inequality is a generalization of the inequalities obtained in [I. Mihai, Geom. Dedicata, 109, 165–173 (2004) and K. Arslan, R. Ezentas, I. Mihai, and C. Murathan, J. Korean Math. Soc., 42, No. 5, 1101–1110 (2005)]. The inequalities deduced in the paper either generalize or improve all inequalities available in the literature and related to the squared norm of the second fundamental form for the contact CR-warped product submanifolds of any almost contact metric manifold.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Mustafa, S. Uddin, V. A. Khan, and B. R. Wong, “Contact CR-warped product submanifolds of nearly trans-Sasakian manifolds,” Taiwan. J. Math., 17, No. 4, 1473–1486 (2013).MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    A. Gray and L. M. Hervella, “The sixteen classes of almost Hermitian manifolds and their linear invariants,” Ann. Mat. Pura Appl., 123, 35–58 (1980).MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    B. Y. Chen, “CR-submanifolds of a Kaehler manifold. I,” J. Differ. Geom., 16, 305–323 (1981).MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    B. Y. Chen, “Geometry of warped product CR-submanifolds in Kaehler manifolds I,” Monatsh. Math., 133, 177–195 (2001).MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    B. Y. Chen, Pseudo-Riemannian Geometry, 𝛿-Invariants and Applications, World Scientific Publ. Co., Singapore (2011).Google Scholar
  6. 6.
    B. Y. Chen, A Survey on Geometry of Warped Product Submanifolds, arXiv:1307.0236, arxiv.org (2013).
  7. 7.
    C. Gherghe, “Harmonicity of nearly trans-Sasaki manifolds,” Demonstr. Math., 33, 151–157 (2000).MathSciNetzbMATHGoogle Scholar
  8. 8.
    D. E. Blair, “Almost contact manifolds with Killing structure tensors. I,” Pacific J. Math., 39, 285–292 (1971).MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    D. E. Blair and D. K. Showers, “Almost contact manifolds with Killing structure tensors. II,” J. Differ. Geom., 9, 577–582 (1974).MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    D. E. Blair, “Contact manifolds in Riemannian geometry,” Lect. Notes Math., 509 (1976).Google Scholar
  11. 11.
    D. Chinea and C. Gonzalez, “A classification of almost contact metric manifolds,” Ann. Mat. Pura Appl., 156, 15–36 (1990).MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    F. R. Al-Solamy and M. A. Khan, “Semi-slant warped product submanifolds of Kenmotsu manifolds,” Math. Probl. Eng. doi: https://doi.org/10.1155/2012/708191
  13. 13.
    G. D. Ludden, “Submanifolds of cosymplectic manifolds,” J. Differ. Geom., 4, 237–244 (1970).MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    I. Hasegawa and I. Mihai, “Contact CR-warped product submanifolds in Sasakian manifolds,” Geom. Dedicata, 102, 143–150 (2003).MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    I. Mihai, “Contact CR-warped product submanifolds in Sasakian space forms,” Geom. Dedicata, 109, 165–173 (2004).MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    J. W. Gray, “Some global properties of contact structures,” Ann. Math., 69, 421–450 (1959).MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    J. A. Oubina, “New classes of almost contact metric structures,” Publ. Math. Debrecen, 32, 187–193 (1985).MathSciNetzbMATHGoogle Scholar
  18. 18.
    K. Kenmotsu, “Class of almost contact Riemannian manifolds,” Tohoku Math. J., 24, 93–103 (1972).MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    K. Arslan, R. Ezentas, I. Mihai, and C. Murathan, “Contact CR-warped product submanifolds in Kenmotsu space forms,” J. Korean Math. Soc., 42, No. 5, 1101–1110 (2005).MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    M. Atceken, “Contact CR-warped product submanifolds in Kenmotsu space forms,” Bull. Iran. Math. Soc., 39, No. 3, 415–429 (2013).MathSciNetzbMATHGoogle Scholar
  21. 21.
    M. Atceken, “Contact CR-warped product submanifolds in cosymplectic space forms,” Collect. Math., 62, 17–26 (2011).MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    M. A. Khan, S. Uddin, and R. Sachdevadeva, “Semiinvariant warped product submanifolds of cosymplectic manifolds,” J. Inequal. Appl. doi: https://doi.org/10.1186/1029-242X-2012-19
  23. 23.
    P. Alegre, D. E. Blair, and A. Carriazo, “Generalized Sasakian space forms,” Israel J. Math., 141, 157–183 (2004).MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    R. L. Bishop and B. O’Neill, “Manifolds of negative curvature,” Trans. Amer. Math. Soc., 145, 1–49 (1965).MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    S. Sasaki and Y. Hatakeyama, “On the differentiable manifolds with certain structures which are closely related to almost contact structure. II,” Tohoku Math. J., 13, 281–294 (1961).MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    S. Sular and C. Özgür, “Contact CR-warped product submanifolds in generalized Sasakian space forms,” Turkish J. Math., 36, 485–497 (2012).MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • M. A. Khan
    • 1
  1. 1.Department of MathematicsUniversity of TabukTabukKingdom of Saudi Arabia

Personalised recommendations