Advertisement

Ukrainian Mathematical Journal

, Volume 70, Issue 8, pp 1237–1251 | Cite as

Finite Structurally Uniform Groups and Commutative Nilsemigroups

  • V. D. Derech
Article
  • 2 Downloads

Let S be a finite semigroup. By Sub(S) we denote the lattice of all its subsemigroups. If A ∈ Sub(S), then by h(A) we denote the height of a subsemigroup A in the lattice Sub(S). A semigroup S is called structurally uniform if, for any A,B ∈ Sub(S) the condition h(A) = h(B) implies that AB. We present a classification of finite structurally uniform groups and commutative nilsemigroups.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. H. Clifford and G. B. Preston, The Algebraic Theory of Semigroups, Vols. 1, 2, American Mathematical Society, Providence, RI (1964, 1967).Google Scholar
  2. 2.
    A. L. Libikh, “Inverse semigroups of local automorphism of Abelian groups,” in: Investigation in Algebra [in Russian], Issue 3 (1973), pp. 25–33.Google Scholar
  3. 3.
    S. M. Goberstein, “Inverse semigroups with certain types of partial automorphism monoids,” Glasgow Math. J., 32, 189–195 (1990).MathSciNetCrossRefGoogle Scholar
  4. 4.
    O. Ganyushkin and V. Mazorchuk, Classical Finite Transformation Semigroups. An Introduction, Springer, London (2009).Google Scholar
  5. 5.
    V. D. Derech, “Characterization of the semilattice of idempotents of a finite-rank permutable inverse semigroups with zero,” Ukr. Mat. Zh., 59, No. 10, 1353–1362 (2007); English translation : Ukr. Math. J., 59, No. 10, 1517–1527 (2007).Google Scholar
  6. 6.
    V. D. Derech, “Congruences of a permutable inverse semigroup of finite rank,” Ukr. Mat. Zh., 57, No. 4, 469–473 (2005); English translation : Ukr. Math. J., 57, No. 4, 565–570 (2005).Google Scholar
  7. 7.
    V. D. Derech, “Structure of a finite commutative inverse semigroup and a finite bundle for which the inverse monoid of local automorphisms is permutable,” Ukr. Mat. Zh., 63, No. 9, 1218–1226 (2011); English translation : Ukr. Math. J., 63, No. 9, 1390–1399 (2012).Google Scholar
  8. 8.
    V. D. Derech, “Complete classification of finite semigroups for which the inverse monoid of local automorphisms is a permutable semigroup,” Ukr. Mat. Zh., 68, No. 11, 1571–1578 (2016); English translation : Ukr. Math. J., 68, No. 11, 1820–1828 (2017).Google Scholar
  9. 9.
    V. D. Derech, “Classification of finite nilsemigroups for which the inverse monoid of local automorphisms is a permutable semigroup,” Ukr. Mat. Zh., 68, No. 5, 610–624 (2016); English translation : Ukr. Math. J., 68, No. 5, 689–706 (2016).Google Scholar
  10. 10.
    V. D. Derech, “Classification of finite commutative semigroups for which the inverse monoid of local automorphisms is permutable,” Ukr. Mat. Zh., 64, No. 2, 176–184 (2012); English translation : Ukr. Math. J., 64, No. 2, 198–207 (2012).Google Scholar
  11. 11.
    A. Kh. Abukhamda, “Inductive isomorphisms of some classes of groups,” Mat. Issled., 1(35), 3–19 (1975).MathSciNetGoogle Scholar
  12. 12.
    A. G. Kurosh, The Theory of Groups [in Russian], Nauka, Moscow (1967).Google Scholar
  13. 13.
    H. Hamilton, “Permutability of congruences on commutative semigroups,” Semigroup Forum, 10, 55–66 (1975).MathSciNetCrossRefGoogle Scholar
  14. 14.
    M. Hall, Jr., The Theory of Groups, Macmillan Co., New York (1959).zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • V. D. Derech
    • 1
  1. 1.Vinnytsya National Technical UniversityVinnytsyaUkraine

Personalised recommendations