Advertisement

Ukrainian Mathematical Journal

, Volume 70, Issue 8, pp 1221–1236 | Cite as

Commutative Complex Algebras of the Second Rank with Unity and Some Cases of Plane Orthotropy. I

  • S. V. Hryshchuk
Article
  • 1 Downloads

Among all two-dimensional algebras of the second rank with unity e over the field of complex numbers ℂ, we find a semisimple algebra 𝔹0: ={c1e + c2ω : ck ∈ , k = 1, 2}, ω2 = e, containing bases (e1, e2) such that \( {e}_1^4+2p{e}_1^2{e}_2^2+{e}_2^4=0 \) for any fixed p > 1. A domain {(e1, e2)} is described in the explicit form. We construct 𝔹0-valued “analytic” functions Φ such that their real-valued components satisfy the equation for the stress function u in the case of orthotropic plane deformations \( \left(\frac{\partial^4}{\partial {x}^4}+2p\frac{\partial^4}{\partial {x}^2\partial {y}^2}+\frac{\partial^4}{\partial {y}^4}\right)u\left(x,y\right)=0 \), where x and y are real variables.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Sobrero, “Nuovo metodo per lo studio dei problemi di elasticità, con applicazione al problema della piastra forata,” Ric. Ingegn., 13, No. 2, 255–264 (1934).MathSciNetzbMATHGoogle Scholar
  2. 2.
    J. A. Edenhofer, “A solution of the biharmonic Dirichlet problem by means of hypercomplex analytic functions,” in: V. E. Meister, N. Weck, and W. L. Wendland (editors), Function Theoretical Methods for Partial Differential Equations, Lecture Notes in Mathematics, Vol. 561, Springer, Berlin (1976), pp. 192–202.Google Scholar
  3. 3.
    R. P. Gilbert and W. L. Wendland, “Analytic, generalized, hyperanalytic function theory and an application to elasticity,” Proc. Roy. Soc. Edinburgh, Sect. A, 73, 317–331 (1975).MathSciNetCrossRefGoogle Scholar
  4. 4.
    V. F. Kovalev and I. P. Mel’nichencko, “Biharmonic functions on a biharmonic plane,” Dokl. Akad. Nauk Ukr. SSR, Ser. A, No. 8, 25–27 (1981).Google Scholar
  5. 5.
    S. V. Grishchuk and S. A. Plaksa, “Monogenic functions in a biharmonic algebra,” Ukr. Mat. Zh., 61, No. 12, 1587–1596 (2009); English translation: Ukr. Math. J., 61, No. 12, 1865–1876 (2009).Google Scholar
  6. 6.
    S. V. Grishchuk and S. A. Plaksa, “Monogenic functions in a biharmonic plane,” Dop. Nats. Akad. Nauk Ukr., No. 12, 13–20 (2009).Google Scholar
  7. 7.
    S. V. Gryshchuk and S. A. Plaksa, “Reduction of a Schwartz-type boundary value problem for biharmonic monogenic functions to Fredholm integral equations,” Open Math., 15, No. 1, 374–381 (2017).MathSciNetCrossRefGoogle Scholar
  8. 8.
    V. F. Kovalev, Schwarz Biharmonic Problem [in Russian], Preprint No. 86.16, Institute of Mathematics, Ukrainian National Academy of Sciences, Kiev (1986).Google Scholar
  9. 9.
    S. V. Gryshchuk and S. A. Plaksa, “Schwartz-type integrals in a biharmonic plane,” Int. J. Pure Appl. Math., 83, No. 1, 193–211 (2013).CrossRefGoogle Scholar
  10. 10.
    S. V. Gryshchuk and S. A. Plaksa, “Monogenic functions in the biharmonic boundary value problem,” Math. Meth. Appl. Sci., 39, No. 11, 2939–2952 (2016).MathSciNetCrossRefGoogle Scholar
  11. 11.
    S. V. Gryshchuk, 𝔹-Valued Monogenic Functions and Their Applications to Boundary Value Problems in Displacements of 2-D Elasticity, Preprint ArXiv 1601.01626 (2016).Google Scholar
  12. 12.
    V. F. Kovalev and I. P. Mel’nichencko, “Biharmonic potentials and plane isotropic displacement fields,” Ukr. Mat. Zh., 40, No. 2, 229–231 (1988); English translation: Ukr. Math. J., 40, No. 2, 197–199 (1988).Google Scholar
  13. 13.
    S. V. Hryshchuk, “Hypercomplex monogenic functions of the biharmonic variable in some problems of the plane theory of elasticity,” Dop. Nats. Akad. Nauk Ukr., No. 6, 7–12 (2015).Google Scholar
  14. 14.
    S. V. Hryshchuk, “One-dimensionality of the kernel of the system of Fredholm integral equations for the homogeneous biharmonic problem,” in: “Analysis and Applications,” Proc. of the Institute of Mathematics, Ukrainian National Academy of Sciences [in Ukrainian], Kyiv, 14, No. 1 (2017), pp. 128–139.Google Scholar
  15. 15.
    Ts. S. Bon, “Neumann problem for the biharmonic equation,” Differents. Uravn., 27, No. 1, 169–172 (1991).MathSciNetzbMATHGoogle Scholar
  16. 16.
    V. F. Kovalev and I. P. Mel’nichencko, Algebras of Functional-Invariant Solutions of the p-Biharmonic Equation [in Russian], Preprint No. 91.10, Institute of Mathematics, Ukrainian National Academy of Sciences, Kiev (1991).Google Scholar
  17. 17.
    D. Weisz-Patrault, S. Bock, and K. Gürlebeck, “Three-dimensional elasticity based on quaternion-valued potentials,” Int. J. Solids Structures, 51, No. 19, 3422–3430 (2014).CrossRefGoogle Scholar
  18. 18.
    S. Bock, K. Gürlebeck, D. Legatiuk, and H. M. Nguyen, “ -Hyperholomorphic functions and a Kolosov–Muskhelishvili formula,” Math. Meth. Appl. Sci., 38, No. 18, 5114–5123 (2015).MathSciNetCrossRefGoogle Scholar
  19. 19.
    Yu. M. Grigor’ev, “Regular quaternionic polynomials and their properties,” Complex Var. Elliptic Equat., 62, No. 9, 1343–1363 (2017).MathSciNetCrossRefGoogle Scholar
  20. 20.
    A. M. Tsalik, “Quaternion functions, their properties, and some applications to problems of mechanics of continua,” Dokl. Akad. Nauk Ukr. SSR, Ser. A, No. 12, 21–24 (1986).Google Scholar
  21. 21.
    A. Tsalik, “Quaternionic representations of the 3D elastic and thermoelastic boundary problems,” Math. Meth. Appl. Sci., 18, 687–708 (1995).MathSciNetCrossRefGoogle Scholar
  22. 22.
    K. Gülebeck, K. Habetha, and W. Sprössig, Application of Holomorphic Functions in Two and Higher Dimensions, Birkhäuser, Basel (2016).zbMATHGoogle Scholar
  23. 23.
    A. P. Soldatov, “Hyperanalytic functions and their applications,” in: Contemporary Mathematics and Its Applications. Theory of Functions [in Russian], Institute of Cybernetics, Georgian Academy of Sciences, Tbilisi, 15 (2004), pp. 142–199.Google Scholar
  24. 24.
    A. P. Soldatov, “On the theory of anisotropic plane elasticity,” in: Contemporary Mathematics. Fundamental Trends [in Russian], RUDN, Moscow, 60 (2016), pp. 114–163.Google Scholar
  25. 25.
    E. A. Abapolova and A. P. Soldatov, “Lamé system of the theory of elasticity in a plane orthotropic medium,” in: Contemporary Mathematics and Its Applications [in Russian], Institute of Cybernetics, Georgian Academy of Sciences, Tbilisi, 53, Part 1 (2008), pp. 3–9.Google Scholar
  26. 26.
    S. P. Mitin, “On the representation of solutions of the anisotropic theory of elasticity,” Differents. Uravn., 34, No. 1, 94–100 (1998).MathSciNetGoogle Scholar
  27. 27.
    N. I. Muskhelishvili, Some Basic Problems of the Mathematical Theory of Elasticity [in Russian], Nauka, Moscow (1966).Google Scholar
  28. 28.
    M. M. Fridman, “Mathematical theory of elasticity of anisotropic media,” Prikl. Mat. Mekh., 14, No. 3, 321–340 (1950).MathSciNetGoogle Scholar
  29. 29.
    S. G. Lekhnitskii, Theory of Elasticity of Anisotropic Body [in Russian], Nauka, Moscow (1977).zbMATHGoogle Scholar
  30. 30.
    D. I. Sherman, “Plane problem of the theory of elasticity for an anisotropic medium,” Tr. Seism. Inst. Akad. Nauk SSSR, No. 6, 51–78 (1938).Google Scholar
  31. 31.
    Yu. A. Bogan, “Regular integral equations for the second boundary-value problem in the anisotropic two-dimensional theory of elasticity,” Izv. Ros. Akad. Nauk, Mekh. Tverd. Tela, No. 4, 17–26 (2005).Google Scholar
  32. 32.
    V. Z. Parton and P. I. Perlin, Methods of the Mathematical Theory of Elasticity [in Russian], Nauka, Moscow (1981).zbMATHGoogle Scholar
  33. 33.
    V. D. Kupradze, Methods of Potential in the Theory of Elasticity [in Russian], Fizmatgiz, Moscow (1963).Google Scholar
  34. 34.
    E. Study, “Über systeme complexer zahlen und ihre anwendungen in der theorie der transformationsgruppen,” Monatsh. Math., 1, No. 1, 283–354 (1890).MathSciNetCrossRefGoogle Scholar
  35. 35.
    N. G. Chebotarev, Introduction to the Theory of Algebras [in Russian], LKI, Moscow (2008).Google Scholar
  36. 36.
    D. Hestenes, P. Reany, and G. Sobczyk, “Unipodal algebra and roots of polynomials,” Adv. Appl. Clifford Algebras, 1, No. 1, 31–51 (1991).zbMATHGoogle Scholar
  37. 37.
    W. E. Baylis (editor), Clifford (Geometric) Algebras: with Applications to Physics, Mathematics, and Engineering, Birkhäuser, Boston (1996).zbMATHGoogle Scholar
  38. 38.
    A. Khrennikov and G. Segre, An Introduction to Hyperbolic Analysis, Preprint ArXiv 0507053 (2005).Google Scholar
  39. 39.
    A. E. Motter and M. A. F. Rosa, “Hyperbolic calculus,” Adv. Appl. Clifford Algebras, 8, No. 1, 109–128 (1998).MathSciNetCrossRefGoogle Scholar
  40. 40.
    V. V. Kisil, “Induced representations and hypercomplex numbers,” Adv. Appl. Clifford Algebras, 23, No. 2, 417–440 (2013).MathSciNetCrossRefGoogle Scholar
  41. 41.
    S. Ulrych, “Relativistic quantum physics with hyperbolic numbers,” Phys. Lett. B, 625, No. 3, 313–323 (2005).MathSciNetCrossRefGoogle Scholar
  42. 42.
    S. A. Plaksa and R. P. Pukhtaevych, “Constructive description of monogenic functions in a finite-dimensional semisimple commutative algebra,” Dop. Nats. Akad. Nauk Ukr., No. 1, 14–21 (2014).Google Scholar
  43. 43.
    S. A. Plaksa and R. P. Pukhtaievych, “Monogenic functions in a finite-dimensional semi-simple commutative algebra,” An. Ştiinţ. Univ. “Ovidius” Constanţa, 22, No. 1, 221–235 (2014).MathSciNetzbMATHGoogle Scholar
  44. 44.
    S. V. Grishchuk and S. A. Plaksa, “On the logarithmic residue of monogenic functions of biharmonic variable,” in: “Complex Analysis and Flows with Free Boundaries,” Proc. of the Institute of Mathematics, Ukrainian National Academy of Sciences, Kyiv, 7, No. 2 (2010), pp. 227–234.Google Scholar
  45. 45.
    I. P. Mel’nichencko, “Biharmonic bases in algebras of the second rank,” Ukr. Mat. Zh., 38, No. 2, 252–254 (1986); English translation: Ukr. Math. J., 38, No. 2, 224–226 (1986).Google Scholar
  46. 46.
    J. D. Riley, “Contributions to the theory of functions of a bicomplex variable,” Tohoku Math. J., 5, No. 2, 132–165 (1953).MathSciNetCrossRefGoogle Scholar
  47. 47.
    V. G. Nikolaev, Investigation of Boundary Properties of Douglis Analytic Functions [in Russian], Candidate-Degree Thesis (Physics and Mathematics), Velikii Novgorod (2015).Google Scholar
  48. 48.
    R. P. Gilbert and G. N. Hile, “Generalized hypercomplex function theory,” Trans. Amer. Math. Soc., 195, 1–29 (1974).MathSciNetCrossRefGoogle Scholar
  49. 49.
    G. N. Hile, “Function theory for a class of elliptic systems in the plane,” J. Different. Equat., 32, No. 3, 369–387 (1979).MathSciNetCrossRefGoogle Scholar
  50. 50.
    R. Z. Yeh, “Hyperholomorphic functions and higher order partial differential equations in the plane,” Pacif. J. Math., 142, No. 2, 379–399 (1990).MathSciNetCrossRefGoogle Scholar
  51. 51.
    R. A. Horn and C. R. Johnson, Matrix Analysis [Russian translation], Mir, Moscow (1989).Google Scholar
  52. 52.
    A. Douglis, “A function-theoretic approach to elliptic systems of equations in two variables,” Comm. Pure Appl. Math., 6, No. 2, 259–289 (1953).MathSciNetCrossRefGoogle Scholar
  53. 53.
    P. V. Bekhterev, Analytical Investigations of the Generalized Hooke Law. Part 1. Application of the Studies on the Potential Energy and the Principle of the Least Work [in Russia], Morskoe Vedomstvo, Leningrad (1925).Google Scholar
  54. 54.
    G. J. Hahn, Elastizitatstheorie. Grundiagen der Linearen Theorie und Anwendungen auf Eindimensionale, Ebene und Raumliche Probleme, B. G. Teubner, Stuttgart (1985).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • S. V. Hryshchuk
    • 1
  1. 1.Institute of Mathematics, Ukrainian National Academy of SciencesKyivUkraine

Personalised recommendations