Advertisement

Ukrainian Mathematical Journal

, Volume 70, Issue 7, pp 1155–1164 | Cite as

Decay Estimates for a Kind of Linear Wave Equations

  • X. Li
  • M. Li
Article
  • 3 Downloads

We consider one kind of dissipative wave equations with exponential speed of propagation. An arbitrary power decay rate for the L2 -norm and energy is obtained by using the multiplier method.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Radu, G. Todorova, and B. Yordanov, “Decay estimates for wave equations with variable coefficients,” Trans. Amer. Math. Soc., 362, 2279–2299 (2010).MathSciNetCrossRefGoogle Scholar
  2. 2.
    V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Editura Academiei Republicii Socialiste, Bucuresti, Springer NetherlandsGoogle Scholar
  3. 3.
    A. Matsumura, “On the asymptotic behavior of solutions of semilinear wave equations,” Publ. Res. Inst. Math. Sci., 12, 169–189 (1976).MathSciNetCrossRefGoogle Scholar
  4. 4.
    K. Nishihara, “Asymptotic behavior of solutions of quasilinear hyperbolic equations with linear damping,” J. Different. Equat., 137, 384–395 (1997).MathSciNetCrossRefGoogle Scholar
  5. 5.
    Y. Han and A. Milani, “On the diffusion phenomenon of quasilinear hyperbolic waves,” Bull. Sci. Math., 124, No. 5, 415–433 (2000).MathSciNetCrossRefGoogle Scholar
  6. 6.
    H. Volkmer, “Asymptotic expansion of L 2-norms of solutions to the heat and dissipative wave equations,” Asymptot. Anal., 67, 85–100 (2010).Google Scholar
  7. 7.
    J. Rauch and M. Taylor, “Decaying states of perturbed wave equations,” J. Math. Anal. Appl., 54, 279–285 (1976).MathSciNetCrossRefGoogle Scholar
  8. 8.
    K. Mochizuki, “Scattering theory for wave equations with dissipative terms,” Publ. Res. Inst. Math. Sci., 12, 383–390 (1976).MathSciNetCrossRefGoogle Scholar
  9. 9.
    A. Matsumura, “Energy decay of solutions of dissipative wave equations,” Proc. Japan Acad., Ser. A. Math. Sci., 53, 232–236 (1977).MathSciNetCrossRefGoogle Scholar
  10. 10.
    K. Mochizuki and H. Nakazawa, “Energy decay and asymptotic behavior of solutions to the wave equations with linear dissipation,” Publ. Res. Inst. Math. Sci., 32, 401–414 (1996).MathSciNetCrossRefGoogle Scholar
  11. 11.
    H. Uesaka, “The total energy decay of solutions for the wave equation with a dissipative term,” Kyoto J. Math., 20, 57–65 (1979).MathSciNetCrossRefGoogle Scholar
  12. 12.
    R. Ikehata, G. Todorova, and B. Yordanov, “Optimal decay rate of the energy for wave equations with critical potential,” J. Math. Soc. Japan, 65, 183–236 (2013).MathSciNetCrossRefGoogle Scholar
  13. 13.
    G. Todorova and B. Yordanov, “Weighted L 2-estimates for dissipative wave equations with variable coefficients,” J. Different. Equat., 246, 4497–4518 (2009).Google Scholar
  14. 14.
    J. Wirth, “Solution representations for a wave equation with weak dissipation,” Math. Methods Appl. Sci., 27, 101–124 (2004).MathSciNetCrossRefGoogle Scholar
  15. 15.
    J. S. Kenigson and J. J. Kenigson, “Energy decay estimates for the dissipative wave equation with space-time dependent potential,” Math. Methods Appl. Sci., 34, No. 1, 48–62 (2011).MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • X. Li
    • 1
  • M. Li
    • 2
  1. 1.Science SchoolTianjin University of CommerceTianjinChina
  2. 2.Department of Information TechnologyTianjin Trust Co., Ltd.TianjinChina

Personalised recommendations