Advertisement

Ukrainian Mathematical Journal

, Volume 70, Issue 7, pp 1145–1154 | Cite as

Simpson-Type Inequalities for Geometrically Relative Convex Functions

  • M. A. Noor
  • K. I. Noor
  • M. U. Awan
Article
  • 2 Downloads

We consider a class of geometrically relative convex functions and deduce several new integral inequalities of Simpson’s type via geometrically relative convex functions. The ideas and techniques used in the paper may stimulate further research in this area.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Alomari and M. Darus, “On some inequalities of Simpson-type via quasiconvex functions and applications,” Transylv. J. Math. Mech., 2, No. 1, 15–24 (2010).MathSciNetGoogle Scholar
  2. 2.
    M. Alomari, M. Darus, and S. S. Dragomir, “New inequalities of Simpson’s type for s-convex functions with applications,” Res. Group Math. Inequal. Appl. Res. Rep. Collect., 12, No. 4 (2009).Google Scholar
  3. 3.
    M. U. Awan, M. A. Noor, M. V. Mihai, K. I. Noor, and A. G. Khan, “Some new bounds for Simpson’s rule involving special functions via harmonic h-convexity,” J. Nonlin. Sci. Appl., 10, No. 4, 1755–1766 (2017).MathSciNetCrossRefGoogle Scholar
  4. 4.
    G. Cristescu and L. Lupsa, Non-Connected Convexities and Applications, Kluwer AP, Dordrecht, (2002).CrossRefGoogle Scholar
  5. 5.
    S. S. Dragomir, R. P. Agarwal, and P. Cerone, “On Simpson’s inequality and applications,” J. Inequal. Appl., 5, 533–579 (2000).MathSciNetzbMATHGoogle Scholar
  6. 6.
    S. S. Dragomir, J. Pečarić, and L. E. Persson, “Some inequalities of Hadamard type,” Soochow J. Math., 21, 335–341 (1995).MathSciNetzbMATHGoogle Scholar
  7. 7.
    M. A. Noor, “Some developments in general variational inequalities,” Appl. Math. Comput., 152, 199–277 (2004).MathSciNetzbMATHGoogle Scholar
  8. 8.
    M. A. Noor, “Extended general variational inequalities,” Appl. Math. Lett., 22, 182–186 (2009).MathSciNetCrossRefGoogle Scholar
  9. 9.
    M. A. Noor, M. U. Awan, and K. I. Noor, “On some inequalities for relative semiconvex functions,” J. Inequal. Appl., 2013 (2013).Google Scholar
  10. 10.
    M. A. Noor, K. I. Noor, and M. U. Awan, “Geometrically relative convex functions,” Appl. Math. Inf. Sci., 8, No. 2, 607–616 (2014).MathSciNetCrossRefGoogle Scholar
  11. 11.
    M. A. Noor, K. I. Noor, and M. U. Awan, “Hermite–Hadamard inequalities for relative semiconvex functions and applications,” Filomat, 28, No. 2, 221–230 (2014).MathSciNetCrossRefGoogle Scholar
  12. 12.
    M. A. Noor, K. I. Noor, M. U. Awan, and S. Iftikhar, “General harmonic convex functions and integral inequalities,” in: Contributions in Mathematics and Engineering: In the Honor of Constantin Caratheodory, P. M. Pardalos and Th. M. Rassias (editors), Springer, Berlin (2016), pp. 443–472.CrossRefGoogle Scholar
  13. 13.
    M. E. Ozdemir, M. Avci, and A. O. Akdemir, “Simpson-type inequalities via φ-convexity” (2012). arXiv:1205.6657v2Google Scholar
  14. 14.
    M. Z. Sarikaya, E. Set, and M. E. Ozdemir, “On new inequalities of Simpson’s type for s-convex functions,” Comput. Math. Appl., 60, 2191–2199 (2010).MathSciNetCrossRefGoogle Scholar
  15. 15.
    Y. Shuang, H.-P. Yin, and F. Qi, “Hermite–Hadamard type integral inequalities for geometric-arithmetically s-convex functions,” Analysis, 33, 197–208 (2013).MathSciNetCrossRefGoogle Scholar
  16. 16.
    Y. Wang, S.-H. Wang, and F. Qi, “Simpson-type integral inequalities in which the power of the absolute value of the first derivative of the integrand is s-preinvex,” Acta Univ. Ser. Math. Inform., 28, 1–9 (2013).MathSciNetzbMATHGoogle Scholar
  17. 17.
    B.-Y. Xi and F. Qi, “Integral inequalities of Simpson type for logarithmically convex functions,” Adv. Stud. Contemp. Math. (Kyungshang) (to appear).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • M. A. Noor
    • 1
  • K. I. Noor
    • 1
  • M. U. Awan
    • 2
  1. 1.COMSATS Institute of Information TechnologyIslamabadPakistan
  2. 2.Government College UniversityFaisalabadPakistan

Personalised recommendations