Advertisement

Ukrainian Mathematical Journal

, Volume 70, Issue 7, pp 1097–1114 | Cite as

On the Convergence of Mappings in Metric Spaces with Direct and Inverse Modulus Conditions

  • E. A. Sevost’yanov
  • S. A. Skvortsov
Article
  • 4 Downloads

For mappings in metric spaces satisfying one inequality for the modulus of families of curves, we establish the property of lightness of the limit mapping. It is shown that the uniform limit of these mappings is a light mapping, whenever the majorant responsible for the distortion of the families of curves is of finite mean oscillation at any point. In addition, for one class of homeomorphisms of metric spaces, we prove theorems on the equicontinuity of the families of inverse mappings.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Adamowicz and N. Shanmugalingam, “Non-conformal Loewner type estimates for modulus of curve families,” Ann. Acad. Sci. Fenn. Math., 35, 609–626 (2010).MathSciNetCrossRefGoogle Scholar
  2. 2.
    V. Gutlyanskii, V. Ryazanov, and E. Yakubov, “The Beltrami equations and prime ends,” J. Math. Sci., 210, No. 1, 22–51 (2015).MathSciNetCrossRefGoogle Scholar
  3. 3.
    P. Hajlasz and P. Koskela, “Sobolev met Poincare,” Mem. Amer. Math. Soc., 145, No. 688, 1–101 (2000).MathSciNetzbMATHGoogle Scholar
  4. 4.
    J. Heinonen, Lectures on Analysis on Metric Spaces, Springer, New York (2001).CrossRefGoogle Scholar
  5. 5.
    J. Onninen and K. Rajala, “Quasiregular mappings to generalized manifolds,” J. Anal. Math., 109, 33–79 (2009).MathSciNetCrossRefGoogle Scholar
  6. 6.
    V. I. Ryazanov and R. R. Salimov, “Weakly flat spaces and boundaries in the theory of mappings,” Ukr. Mat. Vestn., 4, No. 2 199–234 (2007).Google Scholar
  7. 7.
    S. Rickman, Quasiregular Mappings, Springer, Berlin (1993).CrossRefGoogle Scholar
  8. 8.
    O. Martio, V. Ryazanov, U. Srebro, and E. Yakubov, Moduli in Modern Mapping Theory, Springer, New York (2009).zbMATHGoogle Scholar
  9. 9.
    J. Väisälä, Lectures on n-Dimensional Quasiconformal Mappings, Springer, Berlin (1971).CrossRefGoogle Scholar
  10. 10.
    O. Martio, S. Rickman, and J. V¨ais¨al¨a, “Definitions for quasiregular mappings,” Ann. Acad. Sci. Fenn., Ser. A1. Math., 448, 1–40 (1969)zbMATHGoogle Scholar
  11. 11.
    W. Hurewicz and H. Wallman, Dimension Theory, Princeton Univ. Press, Princeton (1948).Google Scholar
  12. 12.
    E. A. Sevost’yanov, “On the openness and discreteness of mappings with unbounded characteristic of quasiconformality,” Ukr. Mat. Zh., 63, No. 8, 1128–1134 (2011); English translation: Ukr. Math. J., 63, No. 8, 1298–1305 (2012).Google Scholar
  13. 13.
    E. A. Sevost’yanov, “On the lightness of the limit of a sequence of generalized-quasiconformal mappings,” Mat. Zametki, 102, No. 4, 586–596 (2017).Google Scholar
  14. 14.
    B. Fuglede, “Extremal length and functional completion,” Acta Math., 98, 171–219 (1957).MathSciNetCrossRefGoogle Scholar
  15. 15.
    E. A. Sevost’yanov, “On the equicontinuity of homeomorphisms with unbounded characteristic,” Mat. Tr., 15, No. 1, 178–204 (2012).MathSciNetGoogle Scholar
  16. 16.
    E. S. Smolovaya, “Boundary behavior of ring Q-homeomorphisms in metric spaces,” Ukr. Mat. Zh., 62, No. 5, 682–689 (2010); English translation: Ukr. Math. J., 62, No. 5, 785–793 (2010).Google Scholar
  17. 17.
    J. Herron and P. Koskela, “Quasiextremal distance domains and conformal mappings onto circle domains,” Complex Var. Theor. Appl., 15, 167–179 (1990).MathSciNetzbMATHGoogle Scholar
  18. 18.
    K. Kuratowski, Topology, Vol. 2, Academic Press, New York (1968).CrossRefGoogle Scholar
  19. 19.
    R. Näkki and B. Palka, “Uniform equicontinuity of quasiconformal mappings,” Proc. Amer. Math. Soc., 37, No. 2, 427–433 (1973).MathSciNetCrossRefGoogle Scholar
  20. 20.
    L. V. Keldysh, “Topological embeddings in Euclidean spaces,” Tr. Mat. Inst. Akad. Nauk SSSR, 81, 3–184 (1966).Google Scholar
  21. 21.
    M. Vuorinen, “On the existence of angular limits of n-dimensional quasiconformal mappings,” Ark. Mat., 18, 157–180 (1980).MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • E. A. Sevost’yanov
    • 1
  • S. A. Skvortsov
    • 1
  1. 1.I. Franko Zhitomir State UniversityZhitomirUkraine

Personalised recommendations