Advertisement

Ukrainian Mathematical Journal

, Volume 70, Issue 7, pp 1042–1051 | Cite as

Principally Goldie*-Lifting Modules

  • A. T. Güroğlu
  • E. T. Meriç
Article
  • 8 Downloads

A module M is called a principal Goldie*-lifting if, for every proper cyclic submodule X of M, there is a direct summand D of M such that Xβ*D. We focus our attention on principally Goldie*-lifting modules as a generalization of lifting modules. Various properties of these modules are presented.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    U. Acar and A. Harmancı, “Principally supplemented modules,” Albanian J. Math., 4, No. 3, 79–88 (2010).MathSciNetzbMATHGoogle Scholar
  2. 2.
    G. F. Birkenmeier, F. T. Mutlu, C. Nebiyev, N. Sokmez, and A. Tercan, “Goldie*-supplemented modules,” Glasgow Math. J., 52, 41–52 (2010).MathSciNetCrossRefGoogle Scholar
  3. 3.
    V. Camillo, “Distributive modules,” J. Algebra, 36, No. 1, 16–25 (1975).MathSciNetCrossRefGoogle Scholar
  4. 4.
    J. Clark, C. Lomp, N. Vanaja, and R. Wisbauer, Lifting Modules: Supplements and Projectivity in Module Theory, Birkh¨auser, Basel, Switzerland (2006).Google Scholar
  5. 5.
    M. Kamal and A. Yousef, “On principally lifting modules,” Int. Electron. J. Algebra, 2, 127–137 (2007).MathSciNetzbMATHGoogle Scholar
  6. 6.
    T. Koşan and D. Tütüncü Keskin, “H-supplemented duo modules,” J. Algebra Appl., 6, Issue 6, 965–971 (2007).MathSciNetCrossRefGoogle Scholar
  7. 7.
    S. H. Mohamed and B. J. Müller, “Continuous and discrete modules,” London Math. Soc., Lecture Notes Ser., 147 (1990).Google Scholar
  8. 8.
    A. Ç. Özcan and A. Harmancı, “Duo modules,” Glasgow Math. J., 48, 533–545 (2006).MathSciNetCrossRefGoogle Scholar
  9. 9.
    Y. Talebi, A. R. Hamzekolaee, and A. Tercan, “Goldie-rad-supplemented modules,” An. ¸Stiin¸t. Univ. “Ovidius” Constan¸ta. Ser. Mat., 22, No. 3, 205–218 (2014).MathSciNetzbMATHGoogle Scholar
  10. 10.
    W. Yongduo and W. Dejun, “On H-supplemented modules,” Comm. Algebra, 40, 3679–3689 (2012).MathSciNetCrossRefGoogle Scholar
  11. 11.
    R. Wisbauer, Foundations of Module and Ring Theory, Gordon & Breach (1991).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • A. T. Güroğlu
    • 1
  • E. T. Meriç
  1. 1.Celal Bayar UniversityManisaTurkey

Personalised recommendations