Exponential twice continuously differentiable B-spline functions (known from the literature as exponential) are used to set up the collocation method for finding solutions of Burgers’ equation. The effect of exponential cubic B-splines in the collocation method is analyzed by studying the test problems.

This is a preview of subscription content, log in to check access.

## References

- 1.
E. Hopf, “The partial differential equation

*U*_{t}+*UU*_{x}*− vU*_{xx}= 0,”*Comm. Pure Appl. Math.*,**3**, 201–230 (1950). - 2.
H. Bateman, “Some recent researches on the motion of fluids,”

*Monthly Weather Rev.*,**43**, 163–170 (1915). - 3.
S. G. Rubin and R. A. Graves, “Cubic spline approximation for problems in fluid mechanics,

*Nasa Tech. Rep.*, R-436, Washington (1975). - 4.
S. G. Rubin and P. K. Khosla, “High-order numerical solutions using cubic splines,”

*AIAA J.*,**14**, No. 7, 851–858 (1976). - 5.
A. M. Davies, “A numerical investigation of errors arising in applying the Galerkin method of the solution of nonlinear partial differential equations,”

*Comput. Methods Appl. Mech. Eng.*,**11**, 341–350 (1977). - 6.
A. M. Davies, “Application of the Galerkin method to the solution of Burgers equation,”

*Comput. Methods Appl. Mech. Eng.*,**14**, 305–321 (1978). - 7.
P. C. Jain and D. H. Holla, “Numerical solutions of coupled Burgers’ equation,”

*Int. J. Nonlin. Mech.*,**13**, Issue 4, 213–222 (1978). - 8.
P. C. Jain and B. L. Lohar, “Cubic spline technique for coupled nonlinear parabolic equations,”

*Comput. Math. Appl.*,**5**, 179–185 (1979). - 9.
B. L. Lohar and P. C. Jain, “Variable mesh cubic spline technique for N-wave solution of Burgers’ equation,”

*J. Comput. Phys.*,**39**, 433–442 (1981). - 10.
S. Kutluay, A. Esen, and I. Dağ, “Numerical solutions of the Burgers’ equation by the least squares quadratic B-spline finite element method,”

*J. Comput. Appl. Math.*,**167**, 21–33 (2004). - 11.
T. Öziş, A. Esen, and S. Kutluay, “Numerical solution of Burgers equation by quadratic B-spline finite elements,”

*Appl. Math. Comput.*,**165**, 237–249 (2005). - 12.
˙I. Dağ, D. Irk, and B. Saka, “A numerical solution of the Burgers’ equation using cubic B-splines,”

*Appl. Math. Comput.*,**163**, 199–211 (2005). - 13.
İ. Dağ, B. Saka, and A. Boz, “B-spline Galerkin methods for numerical solutions of the Burgers’ equation,”

*Appl. Math. Comput.*,**166**, 506–522 (2005). - 14.
E. N. Aksan, “Quadratic B-spline finite element method for numerical solution of the Burgers equation,”

*Appl. Math. Comput.*,**174**, 884–896 (2006). - 15.
D. Cole, “On a quasilinear parabolic equation occurring in aerodynamics,”

*Quart. Appl. Math.*,**9**, 225–236 (1951). - 16.
B. Saka and İ. Dağ, “Quartic B-spline collocation methods to the numerical solutions of the Burgers’ equation,”

*Chaos Solitons Fractals*,**32**, 1125–1137 (2007). - 17.
B. Saka and İ. Dağ, “A numerical study of Burgers’ equation,”

*J. Franklin Inst.*,**345**, 328–348 (2008). - 18.
B. Sepehrian and M. Lashani, “A numerical solution of the Burgers equation using quintic B-splines,” in:

*Proc. of the World Congr. on Engineering, 2008*, 3, Newswood Limited, London (2008). - 19.
˙I. Dağ, A. Canıvar, and A. ¸ Sahin, “Taylor–Galerkin and Taylor-collocation methods for the numerical solutions of Burgers’ equation using B-splines,”

*Comm. Nonlin. Sci. Numer. Simul.*,**16**, 2696–2708 (2011). - 20.
R. H. Wang, M. Xi, J. H. Zhang, and Q. Fang, “A novel numerical scheme for solving Burgers’ equation,”

*Appl. Math. Comput.*,**217**, 4473–4482 (2011). - 21.
A. Korkmaz, A. M. Aksoy, and I. Dag, “Quartic B-spline differential quadrature method,”

*Int. J. Nonlin. Sci.*,**11**, No. 4, 403–411 (2011). - 22.
H. V. Chapani, V. H. Pradhan, and M. N. Mehta, “Numerical simulation of Burger’s equation using quadratic B-splines,”

*Int. J. Appl. Math. Mech.*,**8**, No. 11, 18–32 (2012). - 23.
R. C. Mittal and R. K. Jain, “Numerical solutions of nonlinear Burgers’ equation with modified cubic B-splines collocation method,”

*Appl. Math. Comput.*,**218**, 7839–7855 (2012). - 24.
C.-C. Wang, W.-J. Liao, and Y.-S. Hsu, “Hybrid spline difference method for the Burgers’ equation,”

*Appl. Math. Comput.*,**219**, 1031–1039 (2012). - 25.
A. Korkmaz and I. Dag, “Cubic B-spline differential quadrature methods and stability for Burgers’ equation,”

*Eng. Comput.*,**30**, No. 3, 320–344 (2013). - 26.
G. Arora and B. K. Singh, “Numerical solution of Burgers’ equation with modified cubic B-spline differential quadrature method,”

*Appl. Math. Comput.*,**224**, 166–177 (2013). - 27.
B. J. McCartin, “Theory of exponential splines,”

*J. Approx. Theory*,**66**, 1–23 (1991). - 28.
M. Sakai and R. A. Usmani, “A class of simple exponential B-splines and their application to numerical solution to singular perturbation problems,”

*Numer. Math.*,**55**, 493–500 (1989). - 29.
D. Radunovic, “Multiresolution exponential B-splines and singularly perturbed boundary problem,”

*Numer. Algorithms*,**47**, 191–210 (2008). - 30.
S. Chandra Sekhara Rao and M. Kumar, “Exponential B-spline collocation method for self-adjoint singularly perturbed boundary value problems,”

*Appl. Numer. Math.*,**58**, 1572–1581 (2008). - 31.
R. Mohammadi, “Exponential B-spline solution of convection-diffusion equations,”

*Appl. Math.*,**4**, 933–944 (2013). - 32.
I. Dag and O. Ersoy, “The exponential cubic B-Spline algorithm for equal width equation,”

*Adv. Stud. Contemp. Math.*,**25**, No. 34, 525–535 (2015). - 33.
O. Ersoy and I. Dag, “The exponential cubic B-Spline algorithm for Korteweg–de Vries (KdV) equation,”

*Adv. Numer. Anal.*(2015). - 34.
I. Dag and O. Ersoy, “The exponential cubic B-spline algorithm for Fisher equation,”

*Chaos Solitons Fractals*,**86**, 101–106 (2016). - 35.
O. Ersoy and I. Dag, “The exponential cubic B-spline collocation method for the Kuramoto–Sivashinsky(KS) equation,”

*Filomat*,**30**, No. 3, 853–861 (2016).

## Author information

### Affiliations

### Corresponding author

Correspondence to O. Ersoy.

## Additional information

Published in Ukrains’kyi Matematychnyi Zhurnal, Vol. 70, No. 6, pp. 788–800, June, 2018.

## Rights and permissions

## About this article

### Cite this article

Ersoy, O., Dag, I. & Adar, N. Exponential Twice Continuously Differentiable B-Spline Algorithm for Burgers’ Equation.
*Ukr Math J* **70, **906–921 (2018). https://doi.org/10.1007/s11253-018-1541-9

Received:

Published:

Issue Date: