Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Exponential Twice Continuously Differentiable B-Spline Algorithm for Burgers’ Equation

  • 57 Accesses

  • 2 Citations

Exponential twice continuously differentiable B-spline functions (known from the literature as exponential) are used to set up the collocation method for finding solutions of Burgers’ equation. The effect of exponential cubic B-splines in the collocation method is analyzed by studying the test problems.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    E. Hopf, “The partial differential equation U t + UU x − vU xx = 0,” Comm. Pure Appl. Math., 3, 201–230 (1950).

  2. 2.

    H. Bateman, “Some recent researches on the motion of fluids,” Monthly Weather Rev., 43, 163–170 (1915).

  3. 3.

    S. G. Rubin and R. A. Graves, “Cubic spline approximation for problems in fluid mechanics, Nasa Tech. Rep., R-436, Washington (1975).

  4. 4.

    S. G. Rubin and P. K. Khosla, “High-order numerical solutions using cubic splines,” AIAA J., 14, No. 7, 851–858 (1976).

  5. 5.

    A. M. Davies, “A numerical investigation of errors arising in applying the Galerkin method of the solution of nonlinear partial differential equations,” Comput. Methods Appl. Mech. Eng., 11, 341–350 (1977).

  6. 6.

    A. M. Davies, “Application of the Galerkin method to the solution of Burgers equation,” Comput. Methods Appl. Mech. Eng., 14, 305–321 (1978).

  7. 7.

    P. C. Jain and D. H. Holla, “Numerical solutions of coupled Burgers’ equation,” Int. J. Nonlin. Mech., 13, Issue 4, 213–222 (1978).

  8. 8.

    P. C. Jain and B. L. Lohar, “Cubic spline technique for coupled nonlinear parabolic equations,” Comput. Math. Appl., 5, 179–185 (1979).

  9. 9.

    B. L. Lohar and P. C. Jain, “Variable mesh cubic spline technique for N-wave solution of Burgers’ equation,” J. Comput. Phys., 39, 433–442 (1981).

  10. 10.

    S. Kutluay, A. Esen, and I. Dağ, “Numerical solutions of the Burgers’ equation by the least squares quadratic B-spline finite element method,” J. Comput. Appl. Math., 167, 21–33 (2004).

  11. 11.

    T. Öziş, A. Esen, and S. Kutluay, “Numerical solution of Burgers equation by quadratic B-spline finite elements,” Appl. Math. Comput., 165, 237–249 (2005).

  12. 12.

    ˙I. Dağ, D. Irk, and B. Saka, “A numerical solution of the Burgers’ equation using cubic B-splines,” Appl. Math. Comput., 163, 199–211 (2005).

  13. 13.

    İ. Dağ, B. Saka, and A. Boz, “B-spline Galerkin methods for numerical solutions of the Burgers’ equation,” Appl. Math. Comput., 166, 506–522 (2005).

  14. 14.

    E. N. Aksan, “Quadratic B-spline finite element method for numerical solution of the Burgers equation,” Appl. Math. Comput., 174, 884–896 (2006).

  15. 15.

    D. Cole, “On a quasilinear parabolic equation occurring in aerodynamics,” Quart. Appl. Math., 9, 225–236 (1951).

  16. 16.

    B. Saka and İ. Dağ, “Quartic B-spline collocation methods to the numerical solutions of the Burgers’ equation,” Chaos Solitons Fractals, 32, 1125–1137 (2007).

  17. 17.

    B. Saka and İ. Dağ, “A numerical study of Burgers’ equation,” J. Franklin Inst., 345, 328–348 (2008).

  18. 18.

    B. Sepehrian and M. Lashani, “A numerical solution of the Burgers equation using quintic B-splines,” in: Proc. of the World Congr. on Engineering, 2008, 3, Newswood Limited, London (2008).

  19. 19.

    ˙I. Dağ, A. Canıvar, and A. ¸ Sahin, “Taylor–Galerkin and Taylor-collocation methods for the numerical solutions of Burgers’ equation using B-splines,” Comm. Nonlin. Sci. Numer. Simul., 16, 2696–2708 (2011).

  20. 20.

    R. H. Wang, M. Xi, J. H. Zhang, and Q. Fang, “A novel numerical scheme for solving Burgers’ equation,” Appl. Math. Comput., 217, 4473–4482 (2011).

  21. 21.

    A. Korkmaz, A. M. Aksoy, and I. Dag, “Quartic B-spline differential quadrature method,” Int. J. Nonlin. Sci., 11, No. 4, 403–411 (2011).

  22. 22.

    H. V. Chapani, V. H. Pradhan, and M. N. Mehta, “Numerical simulation of Burger’s equation using quadratic B-splines,” Int. J. Appl. Math. Mech., 8, No. 11, 18–32 (2012).

  23. 23.

    R. C. Mittal and R. K. Jain, “Numerical solutions of nonlinear Burgers’ equation with modified cubic B-splines collocation method,” Appl. Math. Comput., 218, 7839–7855 (2012).

  24. 24.

    C.-C. Wang, W.-J. Liao, and Y.-S. Hsu, “Hybrid spline difference method for the Burgers’ equation,” Appl. Math. Comput., 219, 1031–1039 (2012).

  25. 25.

    A. Korkmaz and I. Dag, “Cubic B-spline differential quadrature methods and stability for Burgers’ equation,” Eng. Comput., 30, No. 3, 320–344 (2013).

  26. 26.

    G. Arora and B. K. Singh, “Numerical solution of Burgers’ equation with modified cubic B-spline differential quadrature method,” Appl. Math. Comput., 224, 166–177 (2013).

  27. 27.

    B. J. McCartin, “Theory of exponential splines,” J. Approx. Theory, 66, 1–23 (1991).

  28. 28.

    M. Sakai and R. A. Usmani, “A class of simple exponential B-splines and their application to numerical solution to singular perturbation problems,” Numer. Math., 55, 493–500 (1989).

  29. 29.

    D. Radunovic, “Multiresolution exponential B-splines and singularly perturbed boundary problem,” Numer. Algorithms, 47, 191–210 (2008).

  30. 30.

    S. Chandra Sekhara Rao and M. Kumar, “Exponential B-spline collocation method for self-adjoint singularly perturbed boundary value problems,” Appl. Numer. Math., 58, 1572–1581 (2008).

  31. 31.

    R. Mohammadi, “Exponential B-spline solution of convection-diffusion equations,” Appl. Math., 4, 933–944 (2013).

  32. 32.

    I. Dag and O. Ersoy, “The exponential cubic B-Spline algorithm for equal width equation,” Adv. Stud. Contemp. Math., 25, No. 34, 525–535 (2015).

  33. 33.

    O. Ersoy and I. Dag, “The exponential cubic B-Spline algorithm for Korteweg–de Vries (KdV) equation,” Adv. Numer. Anal. (2015).

  34. 34.

    I. Dag and O. Ersoy, “The exponential cubic B-spline algorithm for Fisher equation,” Chaos Solitons Fractals, 86, 101–106 (2016).

  35. 35.

    O. Ersoy and I. Dag, “The exponential cubic B-spline collocation method for the Kuramoto–Sivashinsky(KS) equation,” Filomat, 30, No. 3, 853–861 (2016).

Download references

Author information

Correspondence to O. Ersoy.

Additional information

Published in Ukrains’kyi Matematychnyi Zhurnal, Vol. 70, No. 6, pp. 788–800, June, 2018.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ersoy, O., Dag, I. & Adar, N. Exponential Twice Continuously Differentiable B-Spline Algorithm for Burgers’ Equation. Ukr Math J 70, 906–921 (2018). https://doi.org/10.1007/s11253-018-1541-9

Download citation