Advertisement

Ukrainian Mathematical Journal

, Volume 70, Issue 3, pp 341–361 | Cite as

Irregular Elliptic Boundary-Value Problems and Hörmander Spaces

  • A.V. Anop
  • T. M. Kasirenko
  • O. O. Murach
Article
  • 22 Downloads

We study irregular elliptic problems with boundary operators of higher orders and prove that these problems are Fredholm on appropriate pairs of the inner-product Hörmander spaces that form a two-sided refined Sobolev scale. We prove a theorem on the regularity of generalized solutions to the analyzed problems in these spaces.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. D. Ventsel’, “On boundary conditions for many-dimensional diffusion processes,” Teor. Ver. Ee Primen., 4, 172–185 (1959).Google Scholar
  2. 2.
    V. N. Krasil’nikov, “On the solution of some boundary-contact problems of linear hydrodynamics,” Prikl. Mat. Mekh., 25, No. 4, 764–768 (1961).MathSciNetGoogle Scholar
  3. 3.
    V. A. Veshev and D. P. Kouzov, “On the influence of the medium on the vibration of plates connected at the right angle,” Akust. Zh., 23, No. 3, 368–377 (1977).Google Scholar
  4. 4.
    Ya. A. Roitberg, Elliptic Boundary-Value Problems in the Spaces of Distributions, Kluwer AP, Dordrecht (1996).CrossRefGoogle Scholar
  5. 5.
    V. A. Kozlov, V. G. Maz’ya, and J. Rossmann, Elliptic Boundary-Value Problems in Domains with Point Singularities, American Mathematical Society, Providence, RI (1997).zbMATHGoogle Scholar
  6. 6.
    L. Hörmander, Linear Partial Differential Operators, Springer, Berlin (1963).CrossRefGoogle Scholar
  7. 7.
    L. Hörmander, The Analysis of Linear Partial Differential Operators. Vol. 2. Differential Operators with Constant Coefficients, Springer, Berlin (1983).zbMATHGoogle Scholar
  8. 8.
    N. Jacob, Pseudodifferential Operators and Markov Processes, Vols. 1–3, Imperial College Press, London (2001, 2002, 2005).CrossRefGoogle Scholar
  9. 9.
    V. A. Mikhailets and A. A. Murach, Hörmander Spaces, Interpolation, and Elliptic Problems, De Gruyter, Berlin (2014).CrossRefGoogle Scholar
  10. 10.
    F. Nicola and L. Rodino, Global Pseudodifferential Calculus on Euclidean Spaces, Birkhäuser, Basel (2010).CrossRefGoogle Scholar
  11. 11.
    B. Paneah, The Oblique Derivative Problem. The Poincaré Problem, Wiley, Berlin (2000).zbMATHGoogle Scholar
  12. 12.
    A. I. Stepanets, Methods of Approximation Theory, VSP, Utrecht (2005).CrossRefGoogle Scholar
  13. 13.
    H. Triebel, The Structure of Functions, Birkhäuser, Basel (2001).zbMATHGoogle Scholar
  14. 14.
    V. A. Mikhailets and A. A. Murach, “Elliptic operators in a refined scale of functional spaces,” Ukr. Mat. Zh., 57, No. 5, 689–696 (2005); English translation: Ukr. Math. J., 57, No. 5, 817–825 (2005).Google Scholar
  15. 15.
    V. A. Mikhailets and A. A. Murach, “Improved scales of spaces and elliptic boundary-value problems. II,” Ukr. Mat. Zh., 58, No. 3, 352–370 (2006); English translation: Ukr. Math. J. , 58, No. 3, 398–417 (2006). Google Scholar
  16. 16.
    V. A. Mikhailets and A. A. Murach, “Regular elliptic boundary-value problem for a homogeneous equation in a two-sided improved scale of spaces,” Ukr. Mat. Zh.,58, No. 11, 1536–1555 (2006); English translation: Ukr. Math. J., 58, No. 11, 1748–1767 (2006).Google Scholar
  17. 17.
    V. A. Mikhailets and A. A. Murach, “Elliptic operator with homogeneous regular boundary conditions in two-sided refined scale of spaces,” Ukr. Math. Bull., 3, No. 4, 529–560 (2006).MathSciNetzbMATHGoogle Scholar
  18. 18.
    V. A. Mikhailets and A. A. Murach, “Improved scales of spaces and elliptic boundary-value problems. III,” Ukr. Mat. Zh., 59, No. 5, 679–701 (2007); English translation: Ukr. Math. J., 59, No. 5, 744–765 (2007).Google Scholar
  19. 19.
    V. A. Mikhailets and A. A. Murach, “Elliptic boundary-value problem in a two-sided improved scale of spaces,” Ukr. Math. Zh., 60, No. 4, 497–520 (2008); English translation: Ukr. Math. J., 60, No. 4, 574–597 (2008).Google Scholar
  20. 20.
    V. A. Mikhailets and A. A. Murach, “The refined Sobolev scale, interpolation, and elliptic problems,” Banach J. Math. Anal., 6, No. 2, 211–281 (2012).MathSciNetCrossRefGoogle Scholar
  21. 21.
    A. V. Anop and A. A. Murach, “Parameter-elliptic problems and interpolation with a function parameter,” Meth. Funct. Anal. Top., 20, No. 2, 103–116 (2014).MathSciNetzbMATHGoogle Scholar
  22. 22.
    A. V. Anop and A. A. Murach, “Regular elliptic boundary-value problems in the extended Sobolev scale,” Ukr. Mat. Zh., 66, No. 7, 867–883 (2014); English translation: Ukr. Math. J., 66, No. 7, 969–985 (2014).Google Scholar
  23. 23.
    A. V. Anop and T. M. Kasirenko, “Elliptic boundary-value problems in Hörmander spaces,” Meth. Funct. Anal. Topol., 22, No. 4, 295–310 (2016).zbMATHGoogle Scholar
  24. 24.
    V. A. Mikhailets and A. A. Murach, “Extended Sobolev scale and elliptic operators,” Ukr. Mat. Zh., 65, No. 3, 392–404 (2013); English translation: Ukr. Math. J., 65, No. 3, 435–447 (2013).Google Scholar
  25. 25.
    V. A. Mikhailets and A. A. Murach, “Interpolation Hilbert spaces between Sobolev spaces,” Results Math., 67, No. 1, 135–152 (2015).MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • A.V. Anop
    • 1
  • T. M. Kasirenko
    • 1
  • O. O. Murach
    • 1
  1. 1.Institute of MathematicsUkrainian National Academy of SciencesKyivUkraine

Personalised recommendations