Ukrainian Mathematical Journal

, Volume 69, Issue 10, pp 1607–1630 | Cite as

B-Coercive Convolution Equations in Weighted Function Spaces and Their Applications

  • H. K. Musaev
  • V. B. Shakhmurov

We study the properties of B-separability for elliptic convolution operators in weighted Besov spaces and establish sharp estimates for the resolvents of the convolution operators. As a result, it is shown that these operators are positive and, in addition, play the role of negative generators of analytic semigroups. Moreover, the maximal B-regularity properties are established for the Cauchy problem for a parabolic convolution equation. Finally, these results are applied to obtain the maximal regularity properties for anisotropic integrodifferential equations and a system of infinitely many convolution equations.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. P. Agarwal, R. Bohner, and V. B. Shakhmurov, “Maximal regular boundary-value problems in Banach-valued weighted spaces,” Bound. Value Probl., 1, 9–42 (2005).Google Scholar
  2. 2.
    H. Amann, Linear and Quasi-Linear Equations, Vol. 1, Birkhäuser (1995).Google Scholar
  3. 3.
    H. Amann, “Operator-valued Fourier multipliers, vector-valued Besov spaces, and applications,” Math. Nachr., 186, 5–56 (1997).MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    W. Arendt and S. Bu, “Tools for maximal regularity,” Math. Proc. Cambr. Philos. Soc., 134, 317–336 (2003).MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    A. Ashyralyev, “A survey of results in the theory of fractional spaces generated by positive operators,” TWMS J. Pure Appl. Math., 6, No. 2, 129–157 (2015).MathSciNetzbMATHGoogle Scholar
  6. 6.
    S. Bhalekar and J. Patade, “Analytical solutions of nonlinear equations with proportional delays,” Appl. Comput. Math., 15, No. 3, 331–345 (2016).MathSciNetzbMATHGoogle Scholar
  7. 7.
    O. V. Besov, V. P. Il’in, and S. M. Nikolskii, Integral Representations of Functions and Embedding Theorems [in Russian], Nauka, Moscow (1975).Google Scholar
  8. 8.
    C. Bota, B. Caruntu, and C. Lazureanu, The least square homotopy perturbation method for boundary value problems,” Appl. Comput. Math., 16, No. 1, 39–47 (2017).Google Scholar
  9. 9.
    G. Dore and S. Yakubov, “Semigroup estimates and non-coercive boundary-value problems,” Semigroup Forum, 60, 93–121 (2000).MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    H. Engler, “Strong solutions of quasilinear integro-differential equations with singular kernels in several space dimension,” Electron. J. Differential Equations, 1995, No. 2, 1–16 (1995).MathSciNetzbMATHGoogle Scholar
  11. 11.
    M. Girardi and L. Weis, “Operator-valued multiplier theorems on Besov spaces,” Math. Nachr., 251, 34–51 (2003).MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    V. I. Gorbachuk and M. L. Gorbachuk, Boundary-Value Problems for Differential-Operator Equations [in Russian], Naukova Dumka, Kiev (1984).zbMATHGoogle Scholar
  13. 13.
    Y. Huang, Z. H. Liu, and R. Wang, “Quasilinearization for higher order impulsive fractional differential equations,” Appl. Comput. Math., 15, No. 2, 159–171 (2016).MathSciNetzbMATHGoogle Scholar
  14. 14.
    V. Keyantuo and C. Lizama, “Maximal regularity for a class of integro-differential equations with infinite delay in Banach spaces,” Studia Math., 168, 25–50 (2005).MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    H. K. Musaev and V. B. Shakhmurov, “Regularity properties of degenerate convolution-elliptic equations,” Bound. Value Probl., 50, 1–19 (2016).MathSciNetzbMATHGoogle Scholar
  16. 16.
    V. Poblete, “Solutions of second-order integro-differential equations on periodic Besov spaces,” Proc. Edinburgh Math. Soc. (2), 50, No. 2, 477–492 (2007).Google Scholar
  17. 17.
    J. Prüss, Evolutionary Integral Equations and Applications, Birkhäuser, Basel (1993).CrossRefzbMATHGoogle Scholar
  18. 18.
    V. B. Shakhmurov, “B-separable anisotropic convolution operators and applications,” Georgian Math. J., 20, No. 1, 129–149 (2013).MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    V. B. Shakmurov, “Embedding operators in vector-valued weighted Besov spaces and applications,” J. Funct. Spaces Appl., 2012 (2012).Google Scholar
  20. 20.
    V. B. Shakhmurov, “Embedding theorems in Banach-valued B-spaces and maximal B-regular differential operator equations,” J. Inequal. Appl., 1–22 (2006).Google Scholar
  21. 21.
    V. B. Shakhmurov and H. K. Musaev, “Separability properties of convolution-differential operator equations in weighted L p spaces,” Appl. Comput. Math., 14, No. 2, 221–233 (2015).MathSciNetzbMATHGoogle Scholar
  22. 22.
    V. B. Shakhmurov and H. Musaev, “Maximal regular convolution-differential equations in weighted Besov spaces,” Appl. Comput. Math., 16, No. 2, 190–200 (2017).MathSciNetzbMATHGoogle Scholar
  23. 23.
    V. B. Shakhmurov and R. Shahmurov, “Maximal B-regular integro-differential equations,” Chinese Ann. Math., 30, No. 1, 39–50 (2008).MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    V. B. Shakhmurov and R. Shahmurov, “Sectorial operators with convolution term,” Math. Inequal. Appl., 13, No. 2, 387–404 (2010).MathSciNetzbMATHGoogle Scholar
  25. 25.
    H. Triebel, Interpolation Theory. Function Spaces. Differential Operators, North-Holland, Amsterdam (1978.)Google Scholar
  26. 26.
    L. K. Vashisht, “Banach frames generated by compact operators associated with a boundary-value problem,” TWMS J. Pure Appl. Math., 6, No. 2, 254–258 (2015).MathSciNetzbMATHGoogle Scholar
  27. 27.
    V. Vergara, “Maximal regularity and global well-posedness for a phase field system with memory,” J. Integral Equations Appl., 19, No. 1, 93–115 (2007).MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    S. Yakubov and Ya. Yakubov, Differential-Operator Equations. Ordinary and Partial Differential Equations, Chapmen & Hall /CRC, Boca Raton (2000).Google Scholar
  29. 29.
    L. Zhang, A. Bashir, and G. Wang, “Existence and approximation of positive solutions for nonlinear fractional integro-differential boundary-value problems on an unbounded domain,” Appl. Comput. Math., 15, No. 2, 149–158 (2016).MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • H. K. Musaev
    • 1
  • V. B. Shakhmurov
    • 2
  1. 1.Baku State UniversityBakuAzerbaijan
  2. 2.Okan UniversityIstanbulTurkey

Personalised recommendations