Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

On Generalized Besov and Campanato Spaces

We study the generalized Besov spaces and the spaces defined by the conditions imposed on local oscillations of locally summable functions (in the paper, these spaces are called generalized Campanato spaces).

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Yu. A. Brudnyi, “Spaces defined with the help of local approximations,” Tr. Mosk. Mat. Obshch., 24, 69–132 (1971).

  2. 2.

    S. Campanato, “Proprieta di hölderianita di alcune classi di funzioni,” Ann. Scuola Norm. Super. Pisa, 17, 175–188 (1963).

  3. 3.

    S. Campanato, “Proprieta di una famiglia di spazi funzionali,” Ann. Scuola Norm. Super. Pisa, 18, 137–160 (1964).

  4. 4.

    R. DeVore and R. Sharpley, “Maximal functions measuring smoothness,” Mem. Amer. Math. Soc., 47, No. 293, 1–115 (1984).

  5. 5.

    J. R. Dorronsoro, “Mean oscillation and Besov spaces,” Can. Math. Bull., 28, No. 4, 474–480 (1985).

  6. 6.

    M. L. Gol’dman, “A criterion of imbedding for different metrics for isotropic Besov spaces with general moduli of continuity,” Proc. Steklov Inst. Math., 201, 155–181 (1994).

  7. 7.

    B. Grevholm, “On the structure of the spaces \( {L}_k^{p,\uplambda} \) ,Math. Scand., 26, 241–254 (1970).

  8. 8.

    F. John and L. Nirenberg, “On functions of bounded mean oscillation,” Comm. Pure Appl. Math., 14, 415–426 (1961).

  9. 9.

    G. N. Meyers, “Mean oscillation over cubes and Hölder continuity,” Proc. Amer. Math. Soc., 15, 717–721 (1964).

  10. 10.

    S. M. Nikol’skii, Approximation of Functions of Many Variables and Embedding Theorems [in Russian], Nauka, Moscow (1977).

  11. 11.

    J. Peetre, “On the theory of L p,λ spaces,” J. Funct. Anal., 4, 71–87 (1969).

  12. 12.

    R. M. Rzaev, “On some properties of Riesz potentials in terms of the higher order mean oscillation,” Proc. Inst. Math. Mech. Nat. Acad. Sci. Azerb., 4, 89–99 (1996).

  13. 13.

    R. M. Rzaev, “On boundedness of multidimensional singular integral operator in spaces \( {BMO}_{\varphi, \theta}^k \) and \( {H}_{\varphi, \theta}^k \),” Proc. Azerb. Math. Soc., 2, 164–175 (1996).

  14. 14.

    R. M. Rzaev, “Multidimensional singular integral operator in spaces defined by conditions imposed on the mean oscillation of kth order,” Dokl. Akad. Nauk, 356, No. 5, 602–604 (1997).

  15. 15.

    R. M. Rzaev, “On some maximal functions, measuring smoothness, and metric characteristics,” Trans. Nat. Acad. Sci. Azerb., 19, No. 5, 118–124 (1999).

  16. 16.

    R. M. Rzaev, “Inequalities for some metric characteristics,” Trans. Nat. Acad. Sci. Azerb., 23, No. 1, 173–180 (2003).

  17. 17.

    R. M. Rzaev, “Properties of singular integrals in terms of maximal functions measuring smoothness,” Eurasian Math. J., 4, No. 3, 107–119 (2013).

  18. 18.

    R. M. Rzaev and F. N. Aliyev, “Riesz potentials in spaces defined by conditions on local oscillations of functions,” Trans. Nat. Acad. Sci. Azerb., Ser. Phys.-Tech. Math. Sci., 35, No. 1, 87–95 (2015).

  19. 19.

    R. M. Rzaev and L. R. Aliyeva, “On local properties of functions and singular integrals in terms of the mean oscillation,” Cent. Eur. J. Math., 6, No. 4, 595–609 (2008).

  20. 20.

    D. Sarason, “Functions of vanishing mean oscillation,” Trans. Amer. Math. Soc., 207, 391–405 (1975).

  21. 21.

    R. Sharpley and Y.-S. Shim, “Singular integrals on \( {C}_p^{\alpha } \),” Stud. Math., 92, No. 3, 285–293 (1989).

  22. 22.

    S. Spanne, “Some function spaces defined using the mean oscillation over cubes,” Ann. Scuola Norm. Super. Pisa, 19, 593–608 (1965).

  23. 23.

    S. Spanne, “Sur l’interpolation entre les espaces \( {L}_k^{p\Phi} \)Ann. Scuola Norm. Super. Pisa, 20, 625–648 (1966).

  24. 24.

    E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, NJ (1970).

  25. 25.

    H. Triebel, “Local approximation spaces,” Z. Anal. Anwend., 8, No. 3, 261–288 (1989).

Download references

Author information

Correspondence to R. M. Rzaev.

Additional information

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 69, No. 8, pp. 1096–1106, August, 2017.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rzaev, R.M., Gakhramanova, Z.S. & Alieva, L.R. On Generalized Besov and Campanato Spaces. Ukr Math J 69, 1275–1286 (2018). https://doi.org/10.1007/s11253-017-1430-7

Download citation