We study the indecomposability and isomorphism of objects from the category of monomial matrices Mmat(*K*) over a commutative local principal ideal ring *K* (whose objects are square monomial matrices and the morphisms from *X* to *Y* are matrices *C* such that *XC* = *CY*). We also study the subcategory Mmat_{0}(*K*) of the category Mmat(*K*) with the same objects and solely with morphisms that are monomial matrices.

This is a preview of subscription content, log in to check access.

## References

- 1.
V. M. Bondarenko, “On the similarity of matrices over a ring of the classes of residues,” in:

*Mathematical Collection*[in Russian], Naukova Dumka, Kiev (1976), pp. 275–277. - 2.
A. A. Nechaev, “On the similarity of matrices over a commutative Artinian ring,”

*Tr. Sem. Petrovskogo*, Issue 9, 81–101 (1983). - 3.
A. Pizarro, “Similarity classes of 3 × 3 matrices over a discrete valuation ring,”

*Linear Algebra Appl.*,**54**, 29–51 (1983). - 4.
N. Avni, U. Onn, A. Prasad, and L. Vaserstein, “Similarity classes of 3 × 3 matrices over a local principal ideal ring,”

*Comm. Algebra*,**37**, No. 8, 2601–2615 (2009). - 5.
A. Prasad and P. Singla, “Similarity of matrices over local rings of length two,”

*Indiana Univ. Math. J.*,**64**, No. 2, 471–514 (2015). - 6.
B. R. McDonald,

*Linear Algebra over Commutative Ring*, Dekker, New York (1984). - 7.
W. C. Brown,

*Matrices over Commutative Rings*, Dekker, New York (1993). - 8.
P. Donovan and M. R. Freislich, “Some evidence for an extension of the Brauer–Thrall conjecture,”

*Sonderforschungsbereich Theor. Math. (Bonn)*,**40**(1972), pp. 24–26. - 9.
Yu. A. Drozd, “On tame and wild matrix problems,” in:

*Matrix Problems*[in Russian], Institute of Mathematics, Ukrainian Academy of Sciences, Kiev (1977), pp. 104–114. - 10.
Yu. A. Drozd, “Tame and wild matrix problems,” in:

*Representations and Quadratic Forms*[in Russian], Institute of Mathematics, Ukrainian Academy of Sciences, Kiev (1979), pp. 39–74. - 11.
I. M. Gel’fand and V. A. Ponomarev, “Remarks on the classification of a pair commutative linear transformations in a finitedimensional space,”

*Funkts. Anal. Prilozhen.*,**3**, No. 4, 81–82 (1969). - 12.
S. A. Kruglyak, “On representations of the group (

*p, p*) over a field with characteristic*p,*”*Dokl. Akad. Nauk SSSR*,**153**, No. 6, 1253–1256 (1963). - 13.
V. A. Bashaev, “Representations of the group

*Z*_{2}×*Z*_{2}in a field with characteristic 2,”*Dokl. Akad. Nauk SSSR*,**141**, Issue 5, 1015–1018 (1961). - 14.
V. M. Bondarenko, “Representations of dihedral groups over a field with characteristic 2,”

*Mat. Sb.*,**96**, Issue 1, 63–74 (1975). - 15.
C. Ringel, “The indecomposable representations of dihedral 2-groups,”

*Math. Ann.*,**214**, No. 1, 19–34 (1975). - 16.
V. M. Bondarenko and Yu. A. Drozd, “Representative type of finite groups,”

*Zap. Nauch. Sem. LOMI*,**71**, 24–41 (1977). - 17.
P. M. Gudivok, “On the modular and integer-valued representations of finite groups,”

*Dokl. Akad. Nauk SSSR*,**214**, No. 5, 993–996 (1974). - 18.
P. M. Gudivok,

*Representations of Finite Groups over Commutative Local Rings*[in Russian], Uzhgorod. Nats. Univ., Uzhgorod (2003). - 19.
P. Gabriel, “Unzerlegbure Darstellungen, I,”

*Manuscr. Math.*,**6**, No. 1, 71–103 (1972). - 20.
L. A. Nazarova and A.V. Roiter, “Representations of posets,”

*Zap. Nauch. Sem. LOMI*,**28**, 5–31 (1972). - 21.
M. M. Kleiner, “Posets of finite type,”

*Zap. Nauch. Sem. LOMI*,**28**, 32–41 (1972). - 22.
L. A. Nazarova, A.V. Roiter, V. V. Sergeichuk, and V. M. Bondarenko, “Applications of modules over a dyad for the classification of finite

*p*-groups containing an Abelian subgroup of index*p*and pairs of mutually annihilating operators,”*Zap. Nauch. Sem. LOMI*,**28**, 69–92 (1972). - 23.
P. Donovan and M. R. Freislich, “The representation theory of finite graphs and associated algebras,”

*Carleton Lect. Notes*, No. 5, 3–86 (1973). - 24.
L. A. Nazarova, “Representations of quivers of infinite type,”

*Izv. Akad. Nauk SSSR*,**37**, No. 4, 752–791 (1973). - 25.
Yu. A. Drozd, “Coxeter representations and representations of posets,”

*Funkts. Anal. Prilozhen.*,**8**, 34–42 (1974). - 26.
M. Loupias, “Indecomposable representations of finite ordered sets,”

*Lecture Notes in Mathematics*,**488**, Springer, Berlin (1975), pp. 201–209. - 27.
L. A. Nazarova, “Posets of infinite type,”

*Izv. Akad. Nauk SSSR*,**39**, No. 5, 963–991 (1975). - 28.
A. G. Zavadskii and A. S. Shkabara,

*Commutative Quivers and Matrix Algebras of Finite Type*[in Russian], Preprint No. 76.3, Institute of Mathematics, Ukrainian Academy of Sciences, Kiev (1976). - 29.
V. V. Plakhotnik, “Representations of posets over commutative rings,”

*Izv. Akad. Nauk SSSR*,**40**, No. 3, 527–543 (1976). - 30.
L. A. Nazarova, S. A. Ovsienko, and A.V. Roiter, “Polyquivers of finite type,”

*Tr. Mat. Inst. Akad. Nauk SSSR*,**148**, 190–194 (1978). - 31.
V. V. Kirichenko, “Classification of pairs of mutually annihilating operators in a graded space and representations of the dyad of generalized uniserial algebras,”

*Zap. Nauch. Sem. LOMI*,**75**, 91–109 (1978). - 32.
V. V. Kyrychenko, “Finitely generated modules over a dyad of generalized uniserial rings,”

*Visn. Kyiv. Univ., Ser. Mat. Mekh.*, No. 25, 91–96 (1983). - 33.
V. I. Bekkert, “Tame two-point quivers with relations,”

*Izv. Vyssh. Uchebn. Zaved., Ser. Mat.*, No. 12, 62–64 (1986). - 34.
L. A. Nazarova, V. M. Bondarenko, and A. V. Roiter,

*Representations of Posets with Involution*[in Russian], Preprint No. 86.80, Institute of Mathematics, Ukrainian Academy of Sciences, Kiev (1986). - 35.
V. M. Bondarenko,

*Bundles of Semichain Sets and Their Representations*[in Russian], Preprint No. 88.60, Institute of Mathematics, Ukrainian Academy of Sciences, Kiev (1988). - 36.
L. A. Nazarova, V. M. Bondarenko, and A. V. Roiter, “Tame posets with involution,”

*Tr. Mat. Inst. Akad. Nauk SSSR*,**183**, 149–159 (1990). - 37.
D. Simson, “On the representation type of stratified posets,”

*C. R. Acad. Sci., Ser. I*,**311**, No. 1, 5–10 (1990). - 38.
V. M. Bondarenko and A. G. Zavadskij, “Posets with an equivalence relation of tame type and of finite growth,”

*Can. Math. Soc. Conf. Proc.*,**11**, 67–88 (1991). - 39.
V. M. Bondarenko, “Representations of the bundles of semichain sets and their applications,”

*Alg. Anal.*,**3**, Issue 5, 38–67 (1991). - 40.
V. V. Sergeichuk, “A remark on the classification of holomorphic matrices to within similarity,”

*Funkts. Anal. Prilozhen.*,**25**, No. 2, 65 (1991). - 41.
S. Kasjan and D. Simson, “Fully wild prinjective type of posets and their quadratic forms,”

*J. Algebra*,**172**, No. 2, 506–529 (1995). - 42.
D. Arnold and M. Dugas, “Representation type of posets and finite rank Butler groups,”

*Colloq. Math.*,**74**, No. 2, 299–320 (1997). - 43.
P. Dräxler and Ch. Geiss, “A note on the D

_{ n }-pattern,”*Can. Math. Soc. Conf. Proc.*,**24**, 145–152 (1998). - 44.
Yu. A. Drozd, “Representations of bisected posets and reflection functors,”

*Can. Math. Soc. Conf. Proc.*,**24**, 153–165 (1998). - 45.
H. J. von Hohne and D. Simson, “Bipartite posets of finite prinjective type,”

*J. Algebra*,**201**, No. 1, 86–114 (1998). - 46.
L. A. Nazarova and A.V. Roiter, “Finitely represented dyadic sets,”

*Ukr. Mat. Zh.*,**52**, No. 10, 1363–1396 (2000);*English translation: Ukr. Math. J.*,**52**, No. 10, 1561–1596 (2000). - 47.
Th. Brüstle, S. König, and V. Mazorchuk, “The coinvariant algebra and representation types of blocks of category \( \mathcal{O} \)

*,*”*Bull. London Math. Soc.*,**33**, No. 6, 669–681 (2001). - 48.
Y. A. Drozd and G. M. Greuel, “Tame and wild projective curves and classification of vector bundles,”

*J. Algebra*,**246**, No. 1, 1–54 (2001). - 49.
V. M. Bondarenko, “On dispersing representations of quivers and their connection with representations of bundles of semichains,”

*Algebra Discrete Math.*,**1**, No. 1, 19–31 (2002). - 50.
V. M. Bondarenko, “Linear operators on

*S*-graded vector spaces,”*Linear Algebra Appl.*,**365**, 45–90 (2003). - 51.
Yu. A.Drozd, G. M. Greuel, and I. Kashuba, “On Cohen–Macaulay modules on surface singularities,”

*Mosc. Math. J.*,**3**, No. 2, 397–418 (2003). - 52.
A. Zavadskij, “Tame equipped posets,”

*Linear Algebra Appl.*,**365**, 389–465 (2003). - 53.
I. Burban and Y. Drozd, “Derived categories of nodal algebras,”

*J. Algebra*,**272**, No. 1, 46–94 (2004). - 54.
G. Belitskii, V. M. Bondarenko, R. Lipyanski, V. V. Plachotnik, and V. V. Sergeichuk, “The problems of classifying pairs of forms and local algebras with zero cube radical are wild,”

*Linear Algebra Appl.*,**402**, 135–142 (2005). - 55.
V. M. Bondarenko and M. V. Styopochkina, “On finite posets of inj-finite type and their Tits forms,”

*Algebra Discrete Math.*,**5**, No. 2, 17–21 (2006). - 56.
D. M. Arnold and D. Simson, “Representations of finite posets over discrete valuation rings,”

*Comm. Algebra*,**35**, No. 10, 3128–3144 (2007). - 57.
G. Belitskii, A. R. Dmytryshyn, R. Lipyanski, V. V. Sergeichuk, and A. Tsurkov, “Problems of classifying associative or Lie algebras over a field of characteristic not two and finite metabelian groups are wild,”

*Electron. J. Linear Algebra*,**18**, 516–529 (2009). - 58.
V. M. Bondarenko, V. Futorny, T. Klimchuk, V. V. Sergeichuk, and K. Yusenko, “Systems of subspaces of a unitary space,”

*Linear Algebra Appl.*,**438**, No. 5, 2561–2573 (2013).

## Author information

### Affiliations

### Corresponding author

Correspondence to V. M. Bondarenko.

## Additional information

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 69, No. 7, pp. 889–904, July, 2017.

## Rights and permissions

## About this article

### Cite this article

Bondarenko, V.M., Bortosh, M.Y. Indecomposable and Isomorphic Objects in the Category of Monomial Matrices Over a Local Ring.
*Ukr Math J* **69, **1034–1050 (2017). https://doi.org/10.1007/s11253-017-1413-8

Received:

Published:

Issue Date: