Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

On Principal Ideal Multiplication Modules

  • 69 Accesses

Let R be a commutative ring with identity and let M be a unitary R-module. A submodule N of M is said to be a multiple of M if N = rM for some r 𝜖 R. If every submodule of M is a multiple of M, then M is said to be a principal ideal multiplication module. We characterize principal ideal multiplication modules and generalize some results from [A. Azizi, “Principal ideal multiplication modules,” Algebra Colloq., 15, 637–648 (2008)].

This is a preview of subscription content, log in to check access.

References

  1. 1.

    A. Azizi, “Principal ideal multiplication modules,” Algebra Colloq., 15, 637–648 (2008).

  2. 2.

    A. Azizi, “Intersection of prime submodules and dimension of modules,” Acta Math. Sci. Ser. B, Eng. Edn., 25, No. 3, 385–394 (2005).

  3. 3.

    A. Barnard, “Multiplication modules,” J. Algebra, 71, 174–178 (1981).

  4. 4.

    L. Becerra and J. A. Johnson, “A note on quasiprincipal ideals,” Tamkang J. Math., 15, 77–82 (1984).

  5. 5.

    M. Behboodi and H. Koohy, “On minimal prime submodules,” Far East J. Math. Sci., 6, No. 1, 83–88 (2002).

  6. 6.

    H. S. Butts and R. C. Phillips, “Almost multiplication rings,” Canad. J. Math., 17, 267–277 (1965).

  7. 7.

    Z. A. El-Bast and P. F. Smith, “Multiplication modules,” Comm. Algebra, 16, No. 4, 755–779 (1988).

  8. 8.

    G. Gabriel, “Des catégories abéliennes,” Bull. Soc. Math. France, 90, 323–448 (1962).

  9. 9.

    C. Jensen, “Arithmetical rings,” Acta Math. Sci. Hungar., 17, 115–123 (1966).

  10. 10.

    W. Heinzer and D. Lantz, “The Laskerian property in commutative rings,” J. Algebra, 72, 101–114 (1981).

  11. 11.

    C. Jayaram, “2-Join decomposition lattices,” Algebra Universalis, 45, 7–13 (2001).

  12. 12.

    C. Jayaram, “Almost π-lattices,” Czechoslovak Math. J., 54(129), 119–130 (2004).

  13. 13.

    C. Jayaram and Ü. Tekir, “Q-modules,” Turkish J. Math., 33, 1–12 (2009).

  14. 14.

    J. A. Johnson and M. B. Taylor, “Characterizations of quasicyclic submodules,” Math. Jap., 35, No. 5, 761–766 (1989).

  15. 15.

    M. D. Larsen and P. J. McCarthy, Multiplicative Theory of Ideals, Academic Press, New York (1971).

  16. 16.

    G. M. Low and P. F. Smith, “Multiplication modules and ideals,” Comm. Algebra, 18, No. 12, 4353–4375 (1990).

  17. 17.

    P. J. McCarthy, “Principal elements of lattices of ideals,” Proc. Amer. Math. Soc., 30, 43–45 (1971).

  18. 18.

    J. L. Mott, “Multiplication rings containing only finitely many minimal prime ideals,” J. Sci. Hiroshima Univ. Ser. A-I Math., 33, 73–83 (1969).

  19. 19.

    D. G. Northcott, Lessons on Rings, Modules and Multiplicities, Cambridge Univ. Press, London (1968).

  20. 20.

    E. A. Shahabaddin, Ç. Fethi, and Ü. Tekir, “A short note on primary submodules of multiplication modules,” Int. J. Algebra, 1, 381–384 (2007).

  21. 21.

    P. F. Smith, “Some remarks on multiplication modules,” Arch. Math., 50, 223–235 (1988).

Download references

Author information

Correspondence to A. Azizi.

Additional information

Published in Ukrains’kyi Matematychnyi Zhurnal, Vol. 69, No. 3, pp. 291–299, March, 2017.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Azizi, A., Jayaram, C. On Principal Ideal Multiplication Modules. Ukr Math J 69, 337–347 (2017). https://doi.org/10.1007/s11253-017-1367-x

Download citation