Advertisement

Ukrainian Mathematical Journal

, Volume 68, Issue 9, pp 1366–1373 | Cite as

T -Radical and Strongly T -Radical Supplemented Modules

  • B. Koşar
  • C. Nebiyev
Article
  • 61 Downloads

We define (strongly) t-radical supplemented modules and study some properties of these modules. These modules lie between strongly radical supplemented and strongly ⊕-radical supplemented modules. We also study the relationship between these modules and present examples separating strongly t-radical supplemented modules, supplemented modules, and strongly ⊕-radical supplemented modules.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Alizade, G. Bilhan, and P. F. Smith, “Modules whose maximal submodules have supplements,” Comm. Algebra, 29, No. 6, 2389–2405 (2001).MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    E. Büyükaşık and C. Lomp, “On a recent generalization of semiperfect rings,” Bull. Aust. Math. Soc., 78, No. 2, 317–325 (2008).MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    E. Büyükaşık, E. Mermut, and S. Özdemir, “Rad supplemented modules,” Rend. Semin. Mat. Univ. Padova, 124, 157–177 (2010).MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    E. Büyükaşık and E. Türkmen, “Strongly radical supplemented modules,” Ukr. Math. J., 63, No. 8, 1306–1313 (2012).MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    J. Clark, C. Lomp, N. Vanaja, and R. Wisbauer, “Lifting modules, supplements, and projectivity in module theory,” Front. Math., Birkhäuser, Basel (2006).Google Scholar
  6. 6.
    H. Ҫalışıcı and E. Türkmen, “Generalized ⊕-supplemented modules,” Algebra Discrete Math., 10, 10–18 (2010).MathSciNetzbMATHGoogle Scholar
  7. 7.
    A. Idelhadj and R. Tribak, “On some properties of ⊕-supplemented modules,” Int. J. Math. Math. Sci., 69, 4373–4387 (2003).MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    B. Kosar and C. Nebiyev, “tan-Supplemented modules,” Miskolc Math. Notes, 16, No. 2, 979–986 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    S. H. Mohamed and B. J. Müller, Continuous and Discrete Modules, Cambridge Univ. Press (1990), 147.Google Scholar
  10. 10.
    Y. Talebi, A. R. M. Hamzekolaei, and D. K. Tütüncü, “On Rad ⊕-supplemented modules,” Hadronic J., 32, 505–512 (2009).MathSciNetzbMATHGoogle Scholar
  11. 11.
    Y. Talebi and A. Mahmoudi, “On Rad ⊕-supplemented modules,” Thai J. Math., 9, No. 2, 373–381 (2011).MathSciNetzbMATHGoogle Scholar
  12. 12.
    B. N. Türkmen and A. Pancar, “Generalizations of ⊕-supplemented modules,” Ukr. Math. J., 65, No. 4, 555–564 (2013).MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Y. Wang and N. Ding, “Generalized supplemented modules,” Taiwanese J. Math., 10, No. 6, 1589–1601 (2006).MathSciNetzbMATHGoogle Scholar
  14. 14.
    R. Wisbauer, Foundations of Module and Ring Theory, Gordon & Breach, Philadelphia (1991).zbMATHGoogle Scholar
  15. 15.
    W. Xue, “Characterization of semiperfect and perfect rings,” Publ. Mat., 40, No. 1, 115–125 (1996).MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    H. Zӧschinger, “Komplementierte Moduln über Dedekindringen,” J. Algebra, 29, 42–56 (1974).MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • B. Koşar
    • 1
  • C. Nebiyev
    • 1
  1. 1.Ondokuz Mayıs UniversitySamsunTurkey

Personalised recommendations