Ukrainian Mathematical Journal

, Volume 67, Issue 11, pp 1678–1686 | Cite as

t-Generalized Supplemented Modules

  • B. Koşar
  • C. Nebiyev

In the present paper, t-generalized supplemented modules are defined starting from the generalized ⨁-supplemented modules. In addition, we present examples separating the t-generalized supplemented modules, supplemented modules, and generalized ⨁-supplemented modules and also show the equality of these modules for projective and finitely generated modules. Moreover, we define cofinitely t-generalized supplemented modules and give the characterization of these modules. Furthermore, for any ring R, we show that any finite direct sum of t-generalized supplemented R-modules is t-generalized supplemented and that any direct sum of cofinitely t-generalized supplemented R-modules is a cofinitely t-generalized supplemented module.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Alizade, G. Bilhan, and P. F. Smith, “Modules whose maximal submodules have supplements,” Comm. Algebra, 29, No. 6, 2389–2405 (2001).MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    E. Büyükaşık and C. Lomp, “On a recent generalization of semiperfect rings,” Bull. Austral. Math. Soc., 78, No. 2, 317–325 (2008).MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    J. Clark, C. Lomp, N. Vanaja, and R. Wisbauer, Lifting Modules. Frontiers in Mathematics, Birkhäuser, Basel (2006).Google Scholar
  4. 4.
    H. Çalışıcı and E. Türkmen, “Generalized ⊕-supplemented modules,” Algebra Discrete Math., 10, 10–18 (2010).Google Scholar
  5. 5.
    Ş. Ecevit, M. T. Koşan, and R. Tribak, “Rad-⊕-supplemented modules and cofinitely Rad-⊕-supplemented modules,” Algebra Colloq., 19, No. 4, 637–648 (2012).Google Scholar
  6. 6.
    A. Idelhadj and R. Tribak, “On some properties of ⊕-supplemented modules,” Int. J. Math. Sci., 69, 4373–4387 (2003).MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    F. Kasch, “Modules and rings,” London Math. Soc. Monographs, Acad. Press Inc., London, 17 (1982).Google Scholar
  8. 8.
    S. H. Mohamed and B. J. Müller, “Continuous and discrete modules,” London Math. Soc. Lect. Note Ser., 147 (1990).Google Scholar
  9. 9.
    Y. Talebi, A. R. M. Hamzekolaei, and D. K. Tütüncü, “On Rad ⊕-supplemented modules,” Hadronic J., 32, 505–512 (2009).MathSciNetzbMATHGoogle Scholar
  10. 10.
    Y. Talebi and A. Mahmoudi, “On Rad ⊕-supplemented modules,” Thai J. Math., 9, No. 2, 373–381 (2011).MathSciNetzbMATHGoogle Scholar
  11. 11.
    Y. Wang and N. Ding, “Generalized supplemented modules,” Taiwan. J. Math., 10, No. 6, 1589–1601 (2006).MathSciNetzbMATHGoogle Scholar
  12. 12.
    R. Wisbauer, Foundations of Module and Ring Theory, Gordon & Breach, Philadelphia (1991).zbMATHGoogle Scholar
  13. 13.
    W. Xue, “Characterizations of semiperfect and perfect rings,” Publ. Mat., 40, No. 1, 115–125 (1996).MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    H. Zöschinger, “Komplementierte moduln über Dedekindringen,” J. Algebra, 29, 42–56 (1974).Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • B. Koşar
    • 1
  • C. Nebiyev
    • 1
  1. 1.Ondokuz Mayıs UniversitySamsunTurkey

Personalised recommendations