Advertisement

Ukrainian Mathematical Journal

, Volume 65, Issue 1, pp 140–157 | Cite as

Averaging of set-valued impulsive systems

  • N. A. Perestyuk
  • N. V. Skripnik
Article

We present a survey of the development of ideas of the averaging method for some classes of set-valued impulsive systems (impulsive differential inclusions, impulsive differential equations, and inclusions with Hukuhara derivative; fuzzy impulsive differential equations and inclusions).

Keywords

Average Method Lipschitz Condition Differential Inclusion Asymptotic Method Nonlinear Mechanic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. D. Mil’man and A. D. Myshkis, “On the stability of motion in the presence of pushes,” Sib. Mat. Zh., 1, No. 2, 233–237 (1960).Google Scholar
  2. 2.
    V. D. Mil’man and A. D. Myshkis, “Random pushes in linear dynamical systems,” in: Approximate Methods for the Solution of Differential Equations [in Russian], Akademiya Nauk Ukr. SSR, Kiev (1963), pp. 64–81.Google Scholar
  3. 3.
    A. D. Myshkis and A. M. Samoilenko, “Systems with pushes at fixed times,” Mat. Sb., 74, No. 2, 202–208 (1967).MathSciNetGoogle Scholar
  4. 4.
    N. N. Bogolyubov and Yu. A. Mitropol’skii, Asymptotic Methods of Nonlinear Mechanics [in Russian], Nauka, Moscow (1974).Google Scholar
  5. 5.
    S. T. Zavalishchin and A. N. Sesekin, Impulsive Processes. Models and Applications [in Russian], Nauka, Moscow (1991).Google Scholar
  6. 6.
    S. T. Zavalishchin, A. N. Sesekin, and S. E. Drozdenko, Dynamical Systems with Impulsive Structure [in Russian], Sredne-Ural’skoe Knizhn. Izd., Sverdlovsk (1983).Google Scholar
  7. 7.
    N. M. Krylov and N. N. Bogolyubov, Introduction to Nonlinear Mechanics [in Russian], Akad. Nauk Ukr. SSR, Kiev (1937).Google Scholar
  8. 8.
    Yu. G. Krivonos, I. I. Matichin, and A. A. Chikrii, Dynamical Games with Discontinuous Trajectories [in Russian], Naukova Dumka, Kiev (2005).Google Scholar
  9. 9.
    Yu. A. Mitropol’skii, Averaging Method in Nonlinear Mechanics [in Russian], Naukova Dumka, Kiev (1971).Google Scholar
  10. 10.
    N. A. Perestyuk, V. A. Plotnikov, A. M. Samoilenko, and N. V. Skripnik, Impulsive Differential Equations with Multivalued and Discontinuous Right-Hand Sides [in Russian], Institute of Mathematics, Ukrainian National Academy of Sciences, Kiev (2007).Google Scholar
  11. 11.
    A. M. Samoilenko and N. A. Perestyuk, Impulsive Differential Equations [in Russian], Vyshcha Shkola, Kiev (1987).Google Scholar
  12. 12.
    A. Halanay and D.Wexler, Teoria Calitativă a Sistemelor cu Impulsuri, Editura Academiei Republicii Socialiste România, Bucureşti (1968).zbMATHGoogle Scholar
  13. 13.
    A. A. Chikrii, I. Matychyn, and K. Chikrii, Differential Games with Impulse Control, Birkhäuser, Boston (2007).Google Scholar
  14. 14.
    V. Lakshmikantham, D. D. Bainov, and P. S. Simeonov, Theory of Impulsive Differential Equations, World Scientific, Singapore (1989).zbMATHCrossRefGoogle Scholar
  15. 15.
    A. M. Samoilenko and N. A. Perestyuk, Impulsive Differential Equations, World Scientific, Singapore (1995).zbMATHGoogle Scholar
  16. 16.
    E. A. Grebenikov, Averaging Method in Applied Problems [in Russian], Nauka, Moscow (1986).Google Scholar
  17. 17.
    Yu. A. Mitropol’skii and G. N. Khoma, Mathematical Substantiation of Asymptotic Methods in Nonlinear Mechanics [in Russian], Naukova Dumka, Kiev (1983).Google Scholar
  18. 18.
    N. N. Moiseev, Asymptotic Methods in Nonlinear Mechanics [in Russian], Nauka, Moscow (1969).Google Scholar
  19. 19.
    V. A. Plotnikov, Asymptotic Methods in the Problems of Optimal Control [in Russian], Odessa State University, Odessa (1976).Google Scholar
  20. 20.
    V. A. Plotnikov, Averaging Method in Control Problems [in Russian], Lybid’, Kiev (1992).Google Scholar
  21. 21.
    V. A. Plotnikov, A.V. Plotnikov, and A. N. Vityuk, Differential Equations with Multivalued Right-Hand Sides. Asymptotic Methods [in Russian], AstroPrint, Odessa (1999).Google Scholar
  22. 22.
    A. N. Filatov, Asymptotic Methods in the Theory of Differential and Integro-differential Equations [in Russian], FAN, Tashkent (1974).Google Scholar
  23. 23.
    T. Wazewski, Selected Papers, Państwowe Wydawnictwo Naukowe, Warszawa (1990).zbMATHGoogle Scholar
  24. 24.
    A. N. Filatov, “Classic solutions of differential equations with set-valued right-hand sides,” Vestn. Mosk. Univ., Ser. 1, Mat. Mekh., No. 3, 16–26 (1967).Google Scholar
  25. 25.
    V. I. Blagodatskikh, Introduction to Optimal Control [in Russian], Vysshaya Shkola, Moscow (2001).Google Scholar
  26. 26.
    V. I. Blagodatskikh and A. F. Filippov, “Differential inclusions and optimal control,” in: Collection of Surveys “Topology, Ordinary Differential Equations, and Dynamical Systems,” Proc. of the Institute of Mathematics, Academy of Sciences of the Ukr. SSR [in Russian], Vol. 169, Moscow, Nauka (1985), pp. 194–252.Google Scholar
  27. 27.
    A. L. Dontchev, Perturbations, Approximations and Sensitive Analysis of Optimal Control Systems, Springer, Berlin (1983).CrossRefGoogle Scholar
  28. 28.
    M. Z. Zgurovskii and V. S. Mel’nik, Nonlinear Analysis and Control over Infinite-Dimensional Systems [in Russian], Naukova Dumka, Kiev (1999).Google Scholar
  29. 29.
    A. I. Panasyuk and V. I. Panasyuk, Asymptotic Optimization of Nonlinear Control Systems [in Russian], Belorusskii Universitet, Minsk (1977).Google Scholar
  30. 30.
    A. I. Panasyuk and V. I. Panasyuk, Fundamental Asymptotic Optimization of Controlled Systems [in Russian], Nauka Tekhnika, Minsk (1986).Google Scholar
  31. 31.
    A. A. Tolstonogov, Differential Inclusions in a Banach Space [in Russian], Nauka, Novosibirsk (1986).Google Scholar
  32. 32.
    O. P. Filatov and M. M. Khapaev, Averaging of the Systems of Differential Inclusions [in Russian], Moscow University, Moscow (1998).Google Scholar
  33. 33.
    A. F. Filippov, Differential Equations with Discontinuous Right-Hand Sides [in Russian], Nauka, Moscow (1985).Google Scholar
  34. 34.
    J.-P. Aubin and A. Cellina, Differential Inclusions. Set-Valued Maps and Viability Theory, Springer, Berlin (1984).zbMATHCrossRefGoogle Scholar
  35. 35.
    K. Deimling, Multivalued Differential Equations, Walter de Gruyter, Berlin (1992).zbMATHCrossRefGoogle Scholar
  36. 36.
    M. Kisielewicz, Differential Inclusion and Optimal Control, Państwowe Wydawnictwo Naukowe, Warszawa (1991).Google Scholar
  37. 37.
    V. A. Plotnikov and L. I. Plotnikova, “Averaging of differential inclusions with multivalued pulses,” Ukr. Mat. Zh., 47, No. 11, 1526–1532 (1995); English translation: Ukr. Math. J., 47, No. 11, 1741–1749 (1995).MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    N. A. Perestyuk, V. A. Plotnikov, A. M. Samoilenko, and N. V. Skripnik, Differential Equations with Impulse Effects: Multivalued Right-Hand Sides with Discontinuities, Walter de Gruyter, Berlin (2011).CrossRefGoogle Scholar
  39. 39.
    V. A. Plotnikov, R. Ivanov, and N. Kitanov, “Differential inclusions with finite number of impulses in fixed moments,” Discrete Math. Appl. Res. Math., No. 5, 246–254 (1995).Google Scholar
  40. 40.
    V. A. Plotnikov, R. P. Ivanov, and N. M. Kitanov, “Method of averaging for impulsive differential inclusions,” Pliska Stud. Math. Bulg., No. 12, 43–55 (1998).Google Scholar
  41. 41.
    T. Donchev, “Functional differential inclusions involving dissipative and compact multifunctions,” Glas. Mat., No. 33(53), 51–60 (1998).Google Scholar
  42. 42.
    M. A. Krasnosel’skii and S. G. Krein, “On the averaging principle in nonlinear mechanics,” Usp. Mat. Nauk, 10, No. 3(65), 147–152 (1955).MathSciNetGoogle Scholar
  43. 43.
    N. V. Plotnikova, “Averaging of impulsive differential inclusions,” Mat. Stud., 23, No. 1, 52–56 (2005).MathSciNetzbMATHGoogle Scholar
  44. 44.
    V. A. Plotnikov and N. M. Kitanov, “Continuous dependence of the solutions of impulsive differential inclusions and impulsive control problems,” Kibernet. Sist. Anal., No. 5, 71–85 (2002).Google Scholar
  45. 45.
    M. Hukuhara, “Integration des applications mesurables dont la valeur est uncompact convexe,” Funkc. Ekvacioj., No. 10, 205–223 (1967).Google Scholar
  46. 46.
    F. S. de Blasi and F. Iervolino, “Equazioni differentiali con soluzioni a valore compatto convesso,” Boll. Unione Mat. Ital., 2, No. 4–5, 491–501 (1969).zbMATHGoogle Scholar
  47. 47.
    A.V. Plotnikov and N. V. Skripnik, Differential Equations with Clear and Fuzzy Multivalued Right-Hand Sides. Asymptotic Methods [in Russian], AstroPrint, Odessa (2009).Google Scholar
  48. 48.
    N. V. Skrypnyk, “Averaging of impulsive differential equations with Hukuhara derivative,” Visn. Cherniv. Nats. Univ., Issue 374, 109–115 (2008).Google Scholar
  49. 49.
    A.V. Plotnikov, Differential Inclusions with Hukuhara Derivative and Some Control Problems [in Russian], Deposited at VINITI, No. 2036-82, Odessa (1982).Google Scholar
  50. 50.
    A.V. Plotnikov, “Averaging of differential inclusions with Hukuhara derivative,” Ukr. Mat. Zh., 41, No. 1, 121–125 (1989); English translation: Ukr. Math. J., 41, No. 1, 112–115 (1989).MathSciNetCrossRefGoogle Scholar
  51. 51.
    A.V. Plotnikov, Investigation of Some Differential Equations with Multivalued Right-Hand Side [in Russian], Doctoral-Degree Thesis (Physics and Mathematics), Odessa (1994).Google Scholar
  52. 52.
    N. V. Skripnik, “Averaging of impulsive differential inclusions with Hukuhara derivative,” Nelin. Kolyv., 10, No. 3, 416–432 (2007); English translation: Nonlin. Oscillat., 10, No. 3, 422–438 (2007).MathSciNetGoogle Scholar
  53. 53.
    L. Zadeh, “Fuzzy sets,” Inform. Control, No 8, 338–353 (1965).Google Scholar
  54. 54.
    A. Kaufmann, Introduction a Ia Théorie des Sous-Ensembles Flous, Masson, Paris (1977).Google Scholar
  55. 55.
    D. A. Pospelov (editor), Fuzzy Sets in the Models of Control and Artificial Intelligence [in Russian], Nauka, Moscow (1986).Google Scholar
  56. 56.
    D. Dubois and H. Prade, Theory and Applications, Academic Press, New York (1980).zbMATHGoogle Scholar
  57. 57.
    M. L. Puri and D. A. Ralescu, “Differential of fuzzy functions,” J. Math. Anal. Appl., 91, 552–558 (1983).MathSciNetzbMATHCrossRefGoogle Scholar
  58. 58.
    O. Kaleva, “Fuzzy differential equations,” Fuzzy Sets Systems, 24, No. 3, 301–317 (1987).MathSciNetzbMATHCrossRefGoogle Scholar
  59. 59.
    A. A. Martynyuk and V. I. Slyn’ko, “On the boundedness of motions of mechanical systems described by fuzzy ordinary differential equations,” Prikl. Mekh., 41, No. 12, 93–99 (2005).MathSciNetzbMATHGoogle Scholar
  60. 60.
    A. A. Martynyuk and V. I. Slyn’ko, “On the global existence of solutions of fuzzy ordinary differential equations,” Differents. Uravn., 42, No. 10, 1324–1336 (2006).MathSciNetGoogle Scholar
  61. 61.
    M. Benchohra, J. J. Nieto, and A. Ouahab, “Fuzzy solutions for impulsive differential equations,” Commun. Appl. Anal., 11, No. 3–4, 379–394 (2007).MathSciNetzbMATHGoogle Scholar
  62. 62.
    V. Lakshmikantham and R. N. Mohapatra, Theory of Fuzzy Differential Equations and Inclusions, Taylor & Francis, London (2003).zbMATHCrossRefGoogle Scholar
  63. 63.
    J. Y. Park and H. K. Han, “Fuzzy differential equations,” Fuzzy Sets Systems, No. 110, 69–77 (2000).Google Scholar
  64. 64.
    V. A. Baidosov, “Differential inclusions with fuzzy right-hand sides,” Dokl. Akad. Nauk SSSR, 309, No. 4, 781–783 (1989).Google Scholar
  65. 65.
    V. A. Baidosov, “Fuzzy differential inclusions,” Prikl. Mat. Mekh., 54, Issue 1, 12–17 (1990).MathSciNetGoogle Scholar
  66. 66.
    J.-P. Aubin, “Fuzzy differential inclusions,” Probl. Control Inform. Theory, 19, No. 1, 55–67 (1990).MathSciNetzbMATHGoogle Scholar
  67. 67.
    N. V. Skripnik, “Existence of classic solutions of fuzzy differential inclusions,” Ukr. Mat. Vest., 5, 244–257 (2008).MathSciNetGoogle Scholar
  68. 68.
    N. V. Skripnik, “Quasisolutions of fuzzy differential inclusions,” Nelin. Kolyv., 14, No. 4, 528–535 (2011); English translation: Nonlin. Oscillat., 14, No. 4, 560–567 (2011).MathSciNetGoogle Scholar
  69. 69.
    A.V. Plotnikov and N. V. Skripnik, “The generalized solutions of the fuzzy differential inclusions,” Int. J. Pure Appl. Math., 56, No. 2, 165–172 (2009).MathSciNetzbMATHGoogle Scholar
  70. 70.
    N. V. Skripnik, “The full averaging of fuzzy impulsive differential inclusions,” Surv. Math. Appl., 5, 247–263 (2010).MathSciNetGoogle Scholar
  71. 71.
    N. V. Skripnik, “The partial averaging of fuzzy impulsive differential inclusions,” Different. Integr. Equat., 24, No. 7–8, 743–758 (2011).MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • N. A. Perestyuk
    • 1
  • N. V. Skripnik
    • 2
  1. 1.Shevchenko Kiev National UniversityKievUkraine
  2. 2.Mechnikov Odessa National UniversityOdessaUkraine

Personalised recommendations