Advertisement

Ukrainian Mathematical Journal

, Volume 65, Issue 1, pp 64–76 | Cite as

Representation of a solution of the Cauchy problem for an oscillating system with two delays and permutable matrices

  • J. Diblík
  • M. Fečkan
  • M. Pospíšil
Article

We represent a solution of an inhomogeneous second-order differential equation with two delays by using matrix functions under the assumption that the linear parts are given by permutable matrices.

Keywords

■■■  

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Boichuk, J. Diblík, D. Khusainov, and M. Růžičková, “Boundary-value problems for delay differential systems,” Adv. Different. Equat., Article ID 593834 (2010), 20 p.Google Scholar
  2. 2.
    A. Boichuk, J. Diblík, D. Khusainov, and M. Růžičková, “Fredholm’s boundary-value problems for differential systems with a single delay,” Nonlin. Anal.-Theor., 72, 2251–2258 (2010).zbMATHCrossRefGoogle Scholar
  3. 3.
    A. Boichuk, J. Diblík, D. Khusainov, and M. Růžičková, “Boundary-value problems for weakly nonlinear delay differential systems,” Abstr. Appl. Anal., Article ID 631412 (2011).Google Scholar
  4. 4.
    J. Diblík, D. Khusainov, O. Kukharenko, and Z. Svoboda, “Solution of the first boundary-value problem for a system of autonomous second-order linear PDEs of parabolic type with a single delay,” Abstr. Appl. Anal., Article ID 219040 (2012).Google Scholar
  5. 5.
    J. Diblík, D.Ya. Khusainov, J. Lukáčová, and M. Růžičková, “Control of oscillating systems with a single delay,” Adv. Different. Equat., Article ID 108218 (2010).Google Scholar
  6. 6.
    J. Diblík, D.Ya. Khusainov, and M. Růžičková, “Controllability of linear discrete systems with constant coefficients and pure delay,” SIAM J. Contr. Optimiz., 47, 1140–1149 (2008).Google Scholar
  7. 7.
    D.Ya. Khusainov and J. Diblík, “Representation of solutions of linear discrete systems with constant coefficients and pure delay,” Adv. Different. Equat., Article ID 80825 (2006), 1–13.Google Scholar
  8. 8.
    D.Ya. Khusainov, J. Diblík, M. Růžičková, and J. Lukáčová, “Representation of a solution of the Cauchy problem for an oscillating system with pure delay,” Nonlin. Oscillat., 11, No. 2, 276–285 (2008).CrossRefGoogle Scholar
  9. 9.
    D.Ya. Khusainov and G.V. Shuklin, “Linear autonomous time-delay system with permutation matrices solving,” Stud. Univ. Žilina. Math. Ser., 17, 101–108 (2003).Google Scholar
  10. 10.
    D.Ya. Khusainov and G.V. Shuklin, “Relative controllability in systems with pure delay,” Int. Appl. Mech., 41, 210–221 (2005).Google Scholar
  11. 11.
    M. Medved’ and M. Pospíšil, “Sufficient conditions for the asymptotic stability of nonlinear multidelay differential equations with linear parts defined by pairwise permutable matrices,” Nonlin. Anal. Theor., 75, 3348–3363 (2012).CrossRefGoogle Scholar
  12. 12.
    M. Medved’ and M. Pospíšil, “Representation and stability of solutions of systems of difference equations with multiple delays and linear parts defined by pairwise permutable matrices,” Commun. Appl. Anal. (2012) (to appear).Google Scholar
  13. 13.
    M. Medved’, M. Pospíšil, and L. Škripková, “Stability and the nonexistence of blowing-up solutions of nonlinear delay systems with linear parts defined by permutable matrices,” Nonlin. Anal. Theor., 74, 3903–3911 (2011).CrossRefGoogle Scholar
  14. 14.
    M. Medved’ and L. Škripková, “Sufficient conditions for the exponential stability of delay difference equations with linear parts defined by permutable matrices,” Electron. J. Qual. Theory Different. Equat., 22, 1–13 (2012).Google Scholar
  15. 15.
    M. Pospíšil, “Representation and stability of solutions of systems of functional differential equations with multiple delays,” Electron. J. Qual. Theory Different. Equat., 4, 1–30 (2012).Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • J. Diblík
    • 1
  • M. Fečkan
    • 2
  • M. Pospíšil
    • 1
  1. 1.Brno University of TechnologyBrnoCzech Republic
  2. 2.Comenius University and Mathematical Institute of Slovak Academy of SciencesBratislavaSlovakia

Personalised recommendations