Advertisement

Ukrainian Mathematical Journal

, Volume 64, Issue 12, pp 1793–1815 | Cite as

Delayed feedback makes neuronal firing statistics non-Markovian

  • A. K. Vidybida
  • K. G. Kravchuk
Article

The instantaneous state of a neural network consists of both the degree of excitation of each neuron and the positions of impulses in communication lines between the neurons. In neurophysiological experiments, the times of neuronal firing are recorded but not the state of communication lines. However, future spiking moments substantially depend on the past positions of impulses in the lines. This suggests that the sequence of intervals between firing moments (interspike intervals, ISI) in the network can be non-Markovian. In the present paper, we analyze this problem for the simplest possible neural “network,” namely, for a single neuron with delayed feedback. The neuron receives excitatory input both from the input Poisson process and from its own output through the feedback line. We obtain exact expressions for the conditional probability density P(t n+1 | t n ,…,t 1, t 0)dt n+1 and prove that P(t n+1 | t n ,…,t 1, t 0) is not reduced to P(t n+1 | t n ,…,t 1) for any n ≥ 0: This means that the output ISI stream cannot be represented as a Markov chain of any finite order.

Keywords

Spike Train Singular Part Output Stream Conditional Probability Density Nonzero Probability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11253_2013_753_MOESM1_ESM.pdf (2.8 mb)
(PDF 2.77 MB)

References

  1. 1.
    G. L. Gerstein and B. Mandelbrot, “Random walk models for the spike activity of a single neuron,” Biophys. J., 4, 41–68 (1964).CrossRefGoogle Scholar
  2. 2.
    V. S. Korolyuk, P. G. Kostyuk, B. Ya. Pjatigorskii, and E. P. Tkachenko, “Mathematical model of spontaneous activity of some neurons in the CNS,” Biofizika, 12, 895–899 (1967).Google Scholar
  3. 3.
    J. G. Nicholls, A. R. Martin, B. G. Wallace, and P. A. Fuchs, From Neuron to Brain, Sinauer Associates, Sunderland (2001).Google Scholar
  4. 4.
    S. Ghosh-Dastidar and H. Adeli, “Spiking neural networks,” Int. J. Neural Systems, 19, 295–308 (2009).CrossRefGoogle Scholar
  5. 5.
    A.V. Holden, “Models of the stochastic activity of neurons,” Lect. Notes Biomath., 12 (1976).Google Scholar
  6. 6.
    P. Bressloff, “Stochastic neural field theory and the system-size expansion,” SIAM J. Appl. Math., 70, 1488–1521 (2009).MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    T. Britvina and J. J. Eggermont, “A Markov model for interspike interval distributions of auditory cortical neurons that do not show periodic firings,” Formal Asp. Comput., 96, 245–264 (2007).zbMATHGoogle Scholar
  8. 8.
    M. A. Buice and J. D. Cowan, “Statistical mechanics of the neocortex,” Progr. Biophys. Molec. Biol., 99, 53–86 (2009).CrossRefGoogle Scholar
  9. 9.
    S. B. Lowen and M. C. Teich, “Auditory-nerve action potentials form a nonrenewal point process over short as well as long time scales,” J. Acoust. Amer., 92, 803–806 (1992).CrossRefGoogle Scholar
  10. 10.
    M. W. Levine, “Firing rates of a retinal neuron are not predictable from interspike interval statistics,” Biophys. J., 30, 9–26 (1980).CrossRefGoogle Scholar
  11. 11.
    R. Ratnam and M. E. Nelson, “Nonrenewal statistics of electrosensory afferent spike trains: Implications for the detection of weak sensory signals,” J. Neurosci., 20, No. 17, 6672–6683 (2000).Google Scholar
  12. 12.
    P. König, A. K. Engel, and W. Singer, “Integrator or coincidence detector? The role of the cortical neuron revisited,” Trends Neurosci., 19, No. 4, 130–137 (1996).CrossRefGoogle Scholar
  13. 13.
    A. K. Vidybida, “Information processing in a pyramidal-type neuron,” BioNet’96—Biologieorientierte Informatik und pulspropagierende Netze, Third Workshop, November 14–15, 1996 (Berlin) (1996), pp. 96–99.Google Scholar
  14. 14.
    M. Rudolph and A. Destexhe, “Tuning neocortical pyramidal neurons between integrators and coincidence detectors,” J. Comput. Neurosci., 14, No. 3, 239–251 (2003).CrossRefGoogle Scholar
  15. 15.
    B. N. Lundstrom, S. Hong, M. H. Higgs, and A. L. Fairhall, “Two computational regimes of a single-compartment neuron separated by a planar boundary in conductance space,” Neural Comput., 20, 1239–1260 (2008).MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    A. K. Vidybida, “Inhibition as binding controller at the single neuron level,” BioSystems, 48, 263–267 (1998).CrossRefGoogle Scholar
  17. 17.
    D. M. MacKay, “Self-organization in the time domain,” in: M. C. Yovitts, G. T. Jacobi, et al. (editors), Self-Organizing Systems, Spartan Books, Washington (1962), pp. 37–48.Google Scholar
  18. 18.
    A. R. Damasio, “The brain binds entities and events by multiregional activation from convergence zones,” Neural Comput., 1, No. 1, 123–132 (1989).CrossRefGoogle Scholar
  19. 19.
    R. Eckhorn, R. Bauer, W. Jordan, M. Brosch, W. Kruse, M. Munk, and H. J. Reitboeck, “Coherent oscillations: a mechanism for feature linking in the visual cortex?,” Biol. Cybernet., 60, No. 2, 121–130 (1988).CrossRefGoogle Scholar
  20. 20.
    A. K. Engel, P. König, A. K. Kreiter, C. M. Gray, and W. Singer, “Temporal coding by coherent oscillations as a potential solution to the binding problem: physiological evidence,” in: H. G. Schuster and W. Singer (editors), Nonlinear Dynamics and Neuronal Networks, VCH, Weinheim (1991), pp. 3–25.Google Scholar
  21. 21.
    A. K. Vidybida, “Output stream of a binding neuron,” Ukr. Mat. Zh., 59, No. 12, 1619–1638 (2007); English translation: Ukr. Math. J., 59, No. 12, 1819–1839 (2007).MathSciNetCrossRefGoogle Scholar
  22. 22.
    R. Miles, “Synaptic excitation of inhibitory cells by single CA3 hippocampal pyramidal cells of the guinea-pig in vitro,” J. Physiol., 428, 61–77 (1990).Google Scholar
  23. 23.
    B. Barbour, “Synaptic currents evoked in Purkinje cells by stimulating individual granule cells,” Neuron., 11, 759–769 (1993).CrossRefGoogle Scholar
  24. 24.
    P. Andersen, “Synaptic integration in hippocampal neurons,” Fidia Res. Found. Neurosci. Award Lect., Raven Press, New York (1991), pp. 51–71.Google Scholar
  25. 25.
    P. Andersen, M. Raastad, and J. F. Storm, “Excitatory synaptic integration in hippocampal pyramids and dentate granule cells,” Cold Spring Harbor Symp. Quant. Biology, Cold Spring Harbor Laboratory Press, Cold Spring Harbor (1990), pp. 81–86.Google Scholar
  26. 26.
    V. Aroniadou-Anderjaska, M. Ennis, and M. T. Shipley, “Dendrodendritic recurrent excitation in mitral cells of the rat olfactory bulb,” J. Neurophysiol., 82, 489–494 (1999).Google Scholar
  27. 27.
    J. M. Bekkers and C. F. Stevens, “Excitatory and inhibitory autaptic currents in isolated hippocampal neurons maintained in cell culture,” Proc. Nat. Acad. Sci. USA, 88, 7834–7838 (1991).CrossRefGoogle Scholar
  28. 28.
    V. Chan-Palay, “The recurrent collaterals of Purkinje cell axons: a correlated study of rat’s cerebellar cortex with electron microscopy and the Golgi-method,” Z. Anat. Entwicklungsgesch., 134, 210–234 (1971).CrossRefGoogle Scholar
  29. 29.
    J. Lübke, H. Markram, M. Frotscher, and B. Sakmann, “Frequency and dendritic distribution of autapses established by layer 5 pyramidal neurons in the developing rat neocortex: comparison with synaptic innervation of adjacent neurons of the same class,” J. Neurosci., 16, 3209–3218 (1996).Google Scholar
  30. 30.
    R. A. Nicoll and C. E. Jahr, “Self-excitation of olfactory bulb neurones,” Nature, 296, 441–444 (1982).CrossRefGoogle Scholar
  31. 31.
    M. R. Park, J. W. Lighthall, and S. T. Kitai, “Recurrent inhibition in the rat neostriatum,” Brain Res., 194, 359–369 (1980).CrossRefGoogle Scholar
  32. 32.
    G. Tamás, E. H. Buhl, and P. Somogyi, “Massive autaptic self-innervation of GABAergic neurons in cat visual cortex,” J. Neurosci., 17, 6352–6364 (1997).Google Scholar
  33. 33.
    H. Van der Loos and E. M. Glaser, “Autapses in neocortex cerebri: synapses between a pyramidal cell’s axon and its own dendrites,” Brain Res., 48, 355–360 (1972).CrossRefGoogle Scholar
  34. 34.
    Y. Wu, F. Kawasaki, and R. W. Ordway, “Properties of short-term synaptic depression at larval neuromuscular synapses in wild-type and temperature-sensitive paralytic mutants of drosophila,” J. Neurophysiol., 93, 2396–2405 (2005).CrossRefGoogle Scholar
  35. 35.
    J. L. Doob, Stochastic Processes, Wiley, New York (1953).zbMATHGoogle Scholar
  36. 36.
    A. K.Vidybida and K. G. Kravchuk, “Output stream of binding neuron with delayed feedback,” Eur. Phys. J. B, 72, No. 2, 279–287 (2009).CrossRefGoogle Scholar
  37. 37.
    W. Feller, An Introduction to Probability Theory and Its Applications, Vol. 1, Wiley, New York (1968).Google Scholar
  38. 38.
    A. K.Vidybida, “Input-output relations in binding neuron,” BioSystems, 89, 160–165 (2007).CrossRefGoogle Scholar
  39. 39.
    A. K.Vidybida, “Output stream of binding neuron with instantaneous feedback,” Eur. Phys. J. B, 65, 577–584 (2008); 69, 313 (2009).Google Scholar
  40. 40.
    F. Farkhooi, M. F. Strube-Bloss, and M. P. Nawrot, “Serial correlation in neural spike trains: Experimental evidence, stochastic modelling, and single neuron variability,” Phys. Rev. E, 79 (2009).Google Scholar
  41. 41.
    M. P. Nawrot, C. Boucsein, V. Rodriguez-Molina, et al., “Serial interval statistics of spontaneous activity in cortical neurons in vivo and in vitro,” Neurocomputing, 70, 1717–1722 (2007).CrossRefGoogle Scholar
  42. 42.
    B. Cessac, “A discrete time neural network model with spiking neurons: II: Dynamics with noise,” J. Math. Biology, doi: 10.1007/s00285-010-0358-4 (2010).zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • A. K. Vidybida
    • 1
  • K. G. Kravchuk
    • 1
  1. 1.Bogolyubov Institute of Theoretical Physics, Ukrainian National Academy of SciencesKyivUkraine

Personalised recommendations