Ukrainian Mathematical Journal

, Volume 64, Issue 9, pp 1315–1325 | Cite as

On convolution of functions in angular domains

  • V. M. Dil’nyi

We obtain analogs of the Parseval equality and convolution theorem and establish some other properties of the convolution of functions from the Hardy–Smirnov spaces in an arbitrary convex unbounded polygon.


Hardy Space Convolution Theorem Inverse Laplace Transformation Angular Domain Weighted Hardy Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Beurling, “On two problems concerning linear transformations in Hilbert space,” Acta Math., 81, No. 1, 239–255 (1949).zbMATHCrossRefGoogle Scholar
  2. 2.
    P. Lax, “Translation invariant subspaces,” Acta Math., 101, 163–178 (1959).MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    N. K. Nikol’skii, “Invariant subspaces in the theory of operators and theory of functions,” in: VINITI Series in Mathematical Analysis [in Russian], Vol. 12, VINITI, Moscow (1974), pp. 199–412.Google Scholar
  4. 4.
    N. K. Nikolski, Operators, Functions and Systems: an Easy Reading, Vol. 1, American Mathematical Society, Providence (2002).Google Scholar
  5. 5.
    P. D. Lax and R. S. Phillips, Scattering Theory for Automorphic Functions, Princeton University, Princeton (1976).zbMATHGoogle Scholar
  6. 6.
    P. Lax, Functional Analysis, Wiley, New York (2002).zbMATHGoogle Scholar
  7. 7.
    V. P. Gurarii, “Group methods of commutative harmonic analysis,” in: VINITI Series in Mathematics [in Russian], Vol. 25, VINITI, Moscow (1988), pp. 1–312.Google Scholar
  8. 8.
    B. Korenblum, “An extension of a Nevanlinna theory,” Acta Math., 135, No. 1, 187–219 (1974).MathSciNetCrossRefGoogle Scholar
  9. 9.
    B. Korenblum, “A Beurling-type theorem,” Acta Math., 138, No. 1, 265–293 (1977).MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    H. S. Shapiro, “Weakly invertible elements in certain function spaces and generators in l 2;” Mich. Math. J., 11, 161–165 (1964).zbMATHCrossRefGoogle Scholar
  11. 11.
    H. S. Shapiro, “Some observations concerning the weighted polynomial approximation of holomorphic functions,” Mat. Sb., 73, 320– 330 (1967).MathSciNetGoogle Scholar
  12. 12.
    M. M. Dzhrbashyan, Integral Transformations and Representations of Functions in a Complex Domain [in Russian], Nauka, Moscow (1966).Google Scholar
  13. 13.
    B. V. Vinnitskii, “On zeros of functions analytic in a half-plane and completeness of systems of exponents,” Ukr. Mat. Zh., 46, No. 5, 484–500 (1994); English translation: Ukr. Math. J., 46, No. 5, 514–532 (1994).MathSciNetCrossRefGoogle Scholar
  14. 14.
    V. M. Dil’nyi, “On the representation of a class of analytic functions in an angular domain,” Visn. Nats. Univ. “L’viv. Politekhn.,” 718, No. 718, 15–18 (2012).Google Scholar
  15. 15.
    B. V. Vinnitskii, “Approximation properties of systems of exponentials in one space of analytic functions,” Ukr. Mat. Zh., 48, No. 2, 168–183 (1996); English translation: Ukr. Math. J., 48, No. 2, 189–206 (1996).MathSciNetCrossRefGoogle Scholar
  16. 16.
    B. V. Vynnyts’kyi, “On solutions of a homogeneous convolution equation in a class of functions analytic in a half-layer,” Mat. Stud., 7, No. 1, 41–52 (1997).MathSciNetGoogle Scholar
  17. 17.
    E. C. Titchmarsh, Introduction to the Theory of Fourier Integrals [Russian translation], Tekhnicheskaya Literatura, Moscow (1948).Google Scholar
  18. 18.
    J. Garnett, Bounded Analytic Functions, Academic Press, New York (1981).zbMATHGoogle Scholar
  19. 19.
    N. Wiener and R. E. A. C. Paley, Fourier Transforms in the Complex Domain [Russian translation], Nauka, Moscow (1964).Google Scholar
  20. 20.
    I. I. Privalov, Boundary Properties of Analytic Functions [in Russian], Gostekhteorizdat, Moscow (1950).Google Scholar
  21. 21.
    B. V. Vynnyts’kyi, “Convolution equation and angular boundary values of analytic functions,” Dopov. Nats. Akad. Nauk Ukr., Ser. A, No. 10, 13–17 (1995).Google Scholar
  22. 22.
    B. Vinnitskii and V. Dil’nyi, “On extension of Beurling–Lax theorem,” Math. Notes, 79, 362–368 92006).MathSciNetCrossRefGoogle Scholar
  23. 23.
    V. M. Dil’nyi, “On the equivalence of some conditions for weighted Hardy spaces,” Ukr. Mat. Zh., 58, No. 9, 1257–1263 (2006); English translation: Ukr. Math. J., 58, No. 9, 1425–1432 (2006).CrossRefGoogle Scholar
  24. 24.
    V. M. Dil’nyi, “On the existence of solutions of a convolution-type equation,” Dopov. Nats. Akad. Nauk Ukr., No. 11, 7–10 (2008).Google Scholar
  25. 25.
    V. Dilnyi, “On cyclic functions in weighted Hardy spaces,” Zh. Mat. Fiz., Anal., Geometr., 7, 19–33 (2011).MathSciNetGoogle Scholar
  26. 26.
    M. M. Dzhrbashyan and V. M. Martirosyan, “Theorems of Wiener–Paley and Müntz–Szász types,” Izv. Akad. Nauk SSSR, Ser. Mat., 41, 868–894 (1974).Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • V. M. Dil’nyi
    • 1
    • 2
  1. 1.Lviv National UniversityLvivUkraine
  2. 2.Drohobych State Pedagogic UniversityDrohobychUkraine

Personalised recommendations