Ukrainian Mathematical Journal

, Volume 64, Issue 7, pp 991–1018 | Cite as

Impulsive differential inclusions involving evolution operators in separable Banach spaces

  • M. Benchohra
  • J. J. Nieto
  • A. Ouahab
Article
We present some results on the existence of mild solutions and study the topological structures of the sets of solutions for the following first-order impulsive semilinear differential inclusions with initial and boundary conditions:
$$ \begin{array}{*{20}{c}} {y^{\prime}(t)-A(t)y(t)\in F\left( {t,y(t)} \right)\quad \mathrm{for}\;\mathrm{a}.\mathrm{e}\quad t\in J\backslash \left\{ {{t_1},\ldots,{t_m},\ldots } \right\},} \\ {y\left( {t_k^{+}} \right)-y\left( {t_k^{-}} \right)={I_k}\left( {y\left( {t_k^{-}} \right)} \right),\quad k=1,\ldots,} \\ {y(0)=a} \\ \end{array} $$
and
$$ \begin{array}{*{20}{c}} {y^{\prime}(t)-A(t)y(t)\in F\left( {t,y(t)} \right)\quad \mathrm{for}\;\mathrm{a}.\mathrm{e}\quad t\in J\backslash \left\{ {{t_1},\ldots,{t_m},\ldots } \right\},} \\ {y\left( {t_k^{+}} \right)-y\left( {t_k^{-}} \right)={I_k}\left( {y\left( {t_k^{-}} \right)} \right),\quad k=1,\ldots,} \\ {Ly=a,} \\ \end{array} $$
where \( J={{\mathbb{R}}_{+}} \), 0 = t0 < t1 < … < tm <…, \( m\in \mathbb{N} \), limk→∞tk = ∞, A(t) is the infinitesimal generator of a family of evolution operators U(t, s) in a separable Banach space E and F is a set-valued mapping. The functions Ik characterize the jumps of solutions at the impulse points tk, k = 1, ….The mapping L: PCbE is a bounded linear operator. We also investigate the compactness of the set of solutions, some regularity properties of the operator solutions, and the absolute retract.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Abada, M. Benchohra, H. Hammouche, and A. Ouahab, “Existence and controllability results for nondensely defined impulsive semilinear functional differential inclusions with finite delay in Fréchet spaces,” Discuss. Math. Different. Incl. Control. Optim., 27, No. 2, 329–347 (2007).MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Z. Agur, L. Cojocaru, G. Mazaur, R. M. Anderson, and Y. L. Danon, “Pulse mass measles vaccination across age cohorts,” Proc. Nat. Acad. Sci. USA, 90, 11698–11702 (1993).CrossRefGoogle Scholar
  3. 3.
    J. Andres and L. Górniewicz, Topological Fixed Point Principles for Boundary Value Problems, Kluwer, Dordrecht (2003).MATHGoogle Scholar
  4. 4.
    J. P. Aubin, Impulse Differential Inclusions and Hybrid Systems: a Viability Approach, Univ. Paris-Dauphine (2002).Google Scholar
  5. 5.
    J. P. Aubin and A. Cellina, Differential Inclusions, Springer, Berlin (1984).MATHCrossRefGoogle Scholar
  6. 6.
    J. P. Aubin and H. Frankowska, Set-Valued Analysis, Birkhäuser, Boston (1990).MATHGoogle Scholar
  7. 7.
    S. Baghli and M. Benchohra, “Uniqueness results for partial functional differential equations in Fréchet spaces,” Fixed Point Theory, 9, 395–406 (2008).MathSciNetMATHGoogle Scholar
  8. 8.
    S. Baghli and M. Benchohra, “Existence results for semilinear neutral functional differential equations involving evolution operators in Fréchet spaces,” Georgian Math. J., 17, 423–436 (2010).MathSciNetMATHGoogle Scholar
  9. 9.
    S. Baghli and M. Benchohra, “Global uniqueness results for partial functional and neutral functional evolution equations with infinite delay,” Differ. Integr. Equat., 23, 31–50 (2010).MathSciNetMATHGoogle Scholar
  10. 10.
    D. D. Bainov and P. S. Simeonov, Systems with Impulse Effect, Ellis Horwood, Chichester (1989).MATHGoogle Scholar
  11. 11.
    M. Benchohra, A. Boucherif, and A. Ouahab, “On nonoresonance impulsive functional differential inclusions with nonconvex-valued right-hand side,” J. Math. Anal. Appl., 282, 85–94 (2003).MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    M. Benchohra, J. Henderson, and S. K. Ntouyas, Impulsive Differential Equations and Inclusions, Vol. 2, Hindawi, New York (2006).MATHCrossRefGoogle Scholar
  13. 13.
    M. Benchohra, L. Górniewicz, S. K. Ntouyas, and A. Ouahab, “Controllability results for impulsive functional differential inclusions,” Rep. Math. Phys., 54, 211–227 (2004).MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    H. Brézis, Analyse Fonctionnelle. Théorie et Applications, Masson, Paris (1983).MATHGoogle Scholar
  15. 15.
    H. Brézis, Functional Analysis, Sobolev Spaces, and Partial Differential Equations, Masson, Paris (1983).Google Scholar
  16. 16.
    C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Springer, Berlin (1977).MATHGoogle Scholar
  17. 17.
    C. Corduneanu, Integral Equations and Stability of Feedback Systems, Academic Press, New York (1973).MATHGoogle Scholar
  18. 18.
    K. Deimling, Multi-Valued Differential Equations, de Gruyter, Berlin–New York (1992).Google Scholar
  19. 19.
    S. Djebali, L. Górniewicz, and A. Ouahab, “Filippov’s theorem and structure of solution sets for first order impulsive semilinear functional differential inclusions,” Top. Meth. Nonlin. Anal., 32, 261–312 (2008).MATHGoogle Scholar
  20. 20.
    S. Djebali, L. Górniewicz, and A. Ouahab, “First order periodic impulsive semilinear differential inclusions: existence and structure of solution sets,” Math. Comput. Model, 52, 683–714 (2010).MATHCrossRefGoogle Scholar
  21. 21.
    S. Djebali, L. Górniewicz, and A. Ouahab, “Topological structure of solution sets for impulsive differential inclusions in Fréchet spaces,” Nonlin. Anal., 74, 2141–2169 (2011).MATHCrossRefGoogle Scholar
  22. 22.
    S. Djebali, L. Górniewicz, and A. Ouahab, “Existence and structure of solution sets for impulsive differential inclusions: A Survey,” Lect. Notes Nonlin. Anal., No. 13 (2012).Google Scholar
  23. 23.
    Z. Ding and A. Kartsatos, “Nonresonance problems for differential inclusions in separable Banach spaces,” Proc. Amer. Math. Soc., 124, 2357–2365 (1992).MathSciNetCrossRefGoogle Scholar
  24. 24.
    K. J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Springer, New York (2000).MATHGoogle Scholar
  25. 25.
    L. Górniewicz, Topological Fixed Point Theory of Multivalued Mappings, Kluwer, Dordrecht (1999).MATHGoogle Scholar
  26. 26.
    J. R. Graef and A. Ouahab, “First order impulsive differential inclusions with periodic condition,” Electron. J. Qual. Theory Different. Equat., 31, 1–40 (2008).MathSciNetGoogle Scholar
  27. 27.
    J. R. Graef and A. Ouahab, “Structure of solutions sets and a continuous version of Filippov’s theorem for first order impulsive differential inclusions with periodic conditions,” Electron. J. Qual. Theory Different. Equat., 24, 1–23 (2009).MathSciNetGoogle Scholar
  28. 28.
    J. R. Graef and A. Ouahab, “Global existence and uniqueness results for impulsive functional differential equations with variable times and multiple delays,” Dynam. Contin. Discrete Impuls. Syst., Ser. A. Math. Anal., 16, 27–40 (2009).MathSciNetMATHGoogle Scholar
  29. 29.
    A. Granas and J. Dugundji, Fixed Point Theory, Springer, New York (2003).MATHGoogle Scholar
  30. 30.
    D. Guo, “Boundary value problem for impulsive integro-differential equations on unbounded domains in a Banach space,” Appl. Math. Comput., 99, 1–15 (1999).MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    G. Guo, “A class of second-order impulsive integro-differential equations on unbounded domain in a Banach space,” Appl. Math. Comput., 125, 59–77 (2002).MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    D. Guo and X. Z. Liu, “Impulsive integro-differential equations on unbounded domain in Banach space,” Nonlin. Stud., 3, 49–57 (1996).MathSciNetMATHGoogle Scholar
  33. 33.
    M. Frigon, “Fixed point results for multi-valued contractions on gauge spaces, set valued mappings with application in nonlinear analysis,” Ser. Math. Anal. Appl., 4, 175–181 (2002).MathSciNetGoogle Scholar
  34. 34.
    A. Halanay and D. Wexler, Teoria Calitativa a Systeme cu Impulduri, Edit. Repub. Socialist. Romania, Bucharest (1968).Google Scholar
  35. 35.
    J. Henderson and A. Ouahab, “Global existence results for impulsive functional differential inclusions with multiple delay in Fréchet spaces,” PanAmer. Math. J., 15, 73–89 (2005).MathSciNetMATHGoogle Scholar
  36. 36.
    J. Henderson and A. Ouahab, “Extrapolation spaces and controllability of impulsive semilinear functional differential inclusions with infinite delay in Fréchet spaces,” Appl. Anal., 85, 1255–1270 (2006).MathSciNetMATHCrossRefGoogle Scholar
  37. 37.
    J. Henderson and A. Ouahab, “Local and global existence and uniqueness results for second and higher order impulsive functional differential equations with infinite delay,” Austral. J. Appl. Math., 4, No. 6, 1–26 (2007).MathSciNetGoogle Scholar
  38. 38.
    S. Hu and N. S. Papageorgiou, Handbook of Multi-Valued Analysis, Vol. I: Theory, Kluwer, Dordrecht (1997).Google Scholar
  39. 39.
    S. Hu and N. S. Papageorgiou, Handbook of Multi-Valued Analysis. Vol. II: Applications, Kluwer, Dordrecht (2000).Google Scholar
  40. 40.
    M. Kamenskii, V. Obukhovskii, and P. Zecca, Condensing Multi-Valued Maps and Semilinear Differential Inclusions in Banach Spaces, de Gruyter, Berlin (2001).Google Scholar
  41. 41.
    M. Kisielewicz, Differential Inclusions and Optimal Control, Kluwer, Dordrecht (1991).Google Scholar
  42. 42.
    E. Kruger-Thiemr, “Formal theory of drug dosage regiments. 1,” J. Theor. Biol., 13, 212–235 (1966).CrossRefGoogle Scholar
  43. 43.
    E. Kruger-Thiemr, “Formal theory of drug dosage regiments. 2,” J. Theor. Biol., 23, 169–190 (1969).CrossRefGoogle Scholar
  44. 44.
    V. Lakshmikantham, D. D. Bainov, and P. S. Simeonov, Theory of Impulsive Differential Equations, World Scientific, Singapore (1989).MATHCrossRefGoogle Scholar
  45. 45.
    A. Lasota and Z. Opial, “An application of the Kakutani–Ky-Fan theorem in the theory of ordinary differential equations,” Bull. Acad. Pol. Sci. Sér. Sci. Math., Astron. Phys., 13, 781–786 (1965).MathSciNetMATHGoogle Scholar
  46. 46.
    G. Marino, P. Pielramala, and L. Muglia, “Impulsive neutral integrodifferential equations on unbounded intervals,” Mediterr. J. Math., 1, 3–42 (2004).MathSciNetCrossRefGoogle Scholar
  47. 47.
    V. D. Milman and A. A. Myshkis, “On the stability of motion in the presence of pulses,” Sib. Math. J., 1, 233–237 (1960).Google Scholar
  48. 48.
    B. Ricceri, “Une propriété topologique de l’ensemble des points fixes d’une contraction moultivoque à valeurs convexes,” Atti Accad. Naz. Linei. Cl. Sci. Fis., Mat. Natur. Rend. Mat. Appl., 283–286 (1987).Google Scholar
  49. 49.
    A. Ouahab, “Local and global existence and uniqueness results for impulsive differential equations with multiple delay,” J. Math. Anal. Appl., 67, 1027–1041 (2006).Google Scholar
  50. 50.
    A. Ouahab, “Existence and uniqueness results for impulsive functional differential equations with scalar multiple delay and infinite delay,” Nonlin. Anal., 67, 1027–1041 (2007).MathSciNetMATHCrossRefGoogle Scholar
  51. 51.
    S. G. Pandit and S. G. Deo, Differential Systems Involving Impulses, Springer, Berlin (1982).MATHGoogle Scholar
  52. 52.
    A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, New York (1983).MATHCrossRefGoogle Scholar
  53. 53.
    B. Przeradzki, “The existence of bounded solutions for differential equations in Hilbert spaces,” Ann. Pol. Math., 56, 103–121 (1992).MathSciNetMATHGoogle Scholar
  54. 54.
    A. M. Samoilenko and N. A. Perestyuk, Impulsive Differential Equations, World Scientific, Singapore (1995).MATHGoogle Scholar
  55. 55.
    N. A. Perestyuk, V. A. Plotnikov, A. M. Samoilenko, and N. V. Skripnik, Differential Equations with Impulse Effects: Multivalued Right-Hand Sides with Discontinuities, de Gruyter, Berlin (2011).Google Scholar
  56. 56.
    G. T. Stamov and I. M. Stamova, “Second method of Lyapunov and existence of integral manifolds for impulsive differential equations,” SUT J. Math., 32, 101–107 (1996).MathSciNetGoogle Scholar
  57. 57.
    A. A. Tolstonogov, Differential Inclusions in Banach Spaces, Kluwer, Dordrecht (2000).Google Scholar
  58. 58.
    K. Yosida, Functional Analysis, Springer, Berlin (1980).MATHCrossRefGoogle Scholar
  59. 59.
    D. Wagner, “Survey of measurable selection theorems,” SIAM J. Control Optim., 15, 859–903 (1977).MATHCrossRefGoogle Scholar
  60. 60.
    P. Weng, “Global existence in integrable space for impulsive FDE with P-Delay,” Dynam. Discrete Impulse Systems, 9, 321–337 (2002).MATHGoogle Scholar
  61. 61.
    B. Yan, “On L p loc-solutions of nonlinear impulsive Volterra integral equations in Banach spaces,” SUT J. Math., 33, 121–137 (1997).MathSciNetMATHGoogle Scholar
  62. 62.
    B. Yan, “The existence of positive solutions of nonlinear impulsive Fredholm integral equations in Banach spaces,” Dynam. Contin. Discrete Impulse Systems, 6, 289–300 (1999).MATHGoogle Scholar
  63. 63.
    Q. J. Zhu, “On the solution set of differential inclusions in Banach space,” J. Different. Equat., 93, No. 2, 213–237 (1991).MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • M. Benchohra
    • 1
  • J. J. Nieto
    • 2
  • A. Ouahab
    • 1
  1. 1.University of Sidi Bel-AbbèsSidi Bel-AbbèsAlgérie
  2. 2.University of Santiago de CompostelaSantiago de CompostelaSpain

Personalised recommendations