Impulsive differential inclusions involving evolution operators in separable Banach spaces
Article
First Online:
Received:
We present some results on the existence of mild solutions and study the topological structures of the sets of solutions for the following first-order impulsive semilinear differential inclusions with initial and boundary conditions:
and
where \( J={{\mathbb{R}}_{+}} \), 0 = t0 < t1 < … < tm <…, \( m\in \mathbb{N} \), limk→∞tk = ∞, A(t) is the infinitesimal generator of a family of evolution operators U(t, s) in a separable Banach space E and F is a set-valued mapping. The functions Ik characterize the jumps of solutions at the impulse points tk, k = 1, ….The mapping L: PCb→E is a bounded linear operator. We also investigate the compactness of the set of solutions, some regularity properties of the operator solutions, and the absolute retract.
$$ \begin{array}{*{20}{c}} {y^{\prime}(t)-A(t)y(t)\in F\left( {t,y(t)} \right)\quad \mathrm{for}\;\mathrm{a}.\mathrm{e}\quad t\in J\backslash \left\{ {{t_1},\ldots,{t_m},\ldots } \right\},} \\ {y\left( {t_k^{+}} \right)-y\left( {t_k^{-}} \right)={I_k}\left( {y\left( {t_k^{-}} \right)} \right),\quad k=1,\ldots,} \\ {y(0)=a} \\ \end{array} $$
$$ \begin{array}{*{20}{c}} {y^{\prime}(t)-A(t)y(t)\in F\left( {t,y(t)} \right)\quad \mathrm{for}\;\mathrm{a}.\mathrm{e}\quad t\in J\backslash \left\{ {{t_1},\ldots,{t_m},\ldots } \right\},} \\ {y\left( {t_k^{+}} \right)-y\left( {t_k^{-}} \right)={I_k}\left( {y\left( {t_k^{-}} \right)} \right),\quad k=1,\ldots,} \\ {Ly=a,} \\ \end{array} $$
Preview
Unable to display preview. Download preview PDF.
References
- 1.N. Abada, M. Benchohra, H. Hammouche, and A. Ouahab, “Existence and controllability results for nondensely defined impulsive semilinear functional differential inclusions with finite delay in Fréchet spaces,” Discuss. Math. Different. Incl. Control. Optim., 27, No. 2, 329–347 (2007).MathSciNetMATHCrossRefGoogle Scholar
- 2.Z. Agur, L. Cojocaru, G. Mazaur, R. M. Anderson, and Y. L. Danon, “Pulse mass measles vaccination across age cohorts,” Proc. Nat. Acad. Sci. USA, 90, 11698–11702 (1993).CrossRefGoogle Scholar
- 3.J. Andres and L. Górniewicz, Topological Fixed Point Principles for Boundary Value Problems, Kluwer, Dordrecht (2003).MATHGoogle Scholar
- 4.J. P. Aubin, Impulse Differential Inclusions and Hybrid Systems: a Viability Approach, Univ. Paris-Dauphine (2002).Google Scholar
- 5.J. P. Aubin and A. Cellina, Differential Inclusions, Springer, Berlin (1984).MATHCrossRefGoogle Scholar
- 6.J. P. Aubin and H. Frankowska, Set-Valued Analysis, Birkhäuser, Boston (1990).MATHGoogle Scholar
- 7.S. Baghli and M. Benchohra, “Uniqueness results for partial functional differential equations in Fréchet spaces,” Fixed Point Theory, 9, 395–406 (2008).MathSciNetMATHGoogle Scholar
- 8.S. Baghli and M. Benchohra, “Existence results for semilinear neutral functional differential equations involving evolution operators in Fréchet spaces,” Georgian Math. J., 17, 423–436 (2010).MathSciNetMATHGoogle Scholar
- 9.S. Baghli and M. Benchohra, “Global uniqueness results for partial functional and neutral functional evolution equations with infinite delay,” Differ. Integr. Equat., 23, 31–50 (2010).MathSciNetMATHGoogle Scholar
- 10.D. D. Bainov and P. S. Simeonov, Systems with Impulse Effect, Ellis Horwood, Chichester (1989).MATHGoogle Scholar
- 11.M. Benchohra, A. Boucherif, and A. Ouahab, “On nonoresonance impulsive functional differential inclusions with nonconvex-valued right-hand side,” J. Math. Anal. Appl., 282, 85–94 (2003).MathSciNetMATHCrossRefGoogle Scholar
- 12.M. Benchohra, J. Henderson, and S. K. Ntouyas, Impulsive Differential Equations and Inclusions, Vol. 2, Hindawi, New York (2006).MATHCrossRefGoogle Scholar
- 13.M. Benchohra, L. Górniewicz, S. K. Ntouyas, and A. Ouahab, “Controllability results for impulsive functional differential inclusions,” Rep. Math. Phys., 54, 211–227 (2004).MathSciNetMATHCrossRefGoogle Scholar
- 14.H. Brézis, Analyse Fonctionnelle. Théorie et Applications, Masson, Paris (1983).MATHGoogle Scholar
- 15.H. Brézis, Functional Analysis, Sobolev Spaces, and Partial Differential Equations, Masson, Paris (1983).Google Scholar
- 16.C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Springer, Berlin (1977).MATHGoogle Scholar
- 17.C. Corduneanu, Integral Equations and Stability of Feedback Systems, Academic Press, New York (1973).MATHGoogle Scholar
- 18.K. Deimling, Multi-Valued Differential Equations, de Gruyter, Berlin–New York (1992).Google Scholar
- 19.S. Djebali, L. Górniewicz, and A. Ouahab, “Filippov’s theorem and structure of solution sets for first order impulsive semilinear functional differential inclusions,” Top. Meth. Nonlin. Anal., 32, 261–312 (2008).MATHGoogle Scholar
- 20.S. Djebali, L. Górniewicz, and A. Ouahab, “First order periodic impulsive semilinear differential inclusions: existence and structure of solution sets,” Math. Comput. Model, 52, 683–714 (2010).MATHCrossRefGoogle Scholar
- 21.S. Djebali, L. Górniewicz, and A. Ouahab, “Topological structure of solution sets for impulsive differential inclusions in Fréchet spaces,” Nonlin. Anal., 74, 2141–2169 (2011).MATHCrossRefGoogle Scholar
- 22.S. Djebali, L. Górniewicz, and A. Ouahab, “Existence and structure of solution sets for impulsive differential inclusions: A Survey,” Lect. Notes Nonlin. Anal., No. 13 (2012).Google Scholar
- 23.Z. Ding and A. Kartsatos, “Nonresonance problems for differential inclusions in separable Banach spaces,” Proc. Amer. Math. Soc., 124, 2357–2365 (1992).MathSciNetCrossRefGoogle Scholar
- 24.K. J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Springer, New York (2000).MATHGoogle Scholar
- 25.L. Górniewicz, Topological Fixed Point Theory of Multivalued Mappings, Kluwer, Dordrecht (1999).MATHGoogle Scholar
- 26.J. R. Graef and A. Ouahab, “First order impulsive differential inclusions with periodic condition,” Electron. J. Qual. Theory Different. Equat., 31, 1–40 (2008).MathSciNetGoogle Scholar
- 27.J. R. Graef and A. Ouahab, “Structure of solutions sets and a continuous version of Filippov’s theorem for first order impulsive differential inclusions with periodic conditions,” Electron. J. Qual. Theory Different. Equat., 24, 1–23 (2009).MathSciNetGoogle Scholar
- 28.J. R. Graef and A. Ouahab, “Global existence and uniqueness results for impulsive functional differential equations with variable times and multiple delays,” Dynam. Contin. Discrete Impuls. Syst., Ser. A. Math. Anal., 16, 27–40 (2009).MathSciNetMATHGoogle Scholar
- 29.A. Granas and J. Dugundji, Fixed Point Theory, Springer, New York (2003).MATHGoogle Scholar
- 30.D. Guo, “Boundary value problem for impulsive integro-differential equations on unbounded domains in a Banach space,” Appl. Math. Comput., 99, 1–15 (1999).MathSciNetMATHCrossRefGoogle Scholar
- 31.G. Guo, “A class of second-order impulsive integro-differential equations on unbounded domain in a Banach space,” Appl. Math. Comput., 125, 59–77 (2002).MathSciNetMATHCrossRefGoogle Scholar
- 32.D. Guo and X. Z. Liu, “Impulsive integro-differential equations on unbounded domain in Banach space,” Nonlin. Stud., 3, 49–57 (1996).MathSciNetMATHGoogle Scholar
- 33.M. Frigon, “Fixed point results for multi-valued contractions on gauge spaces, set valued mappings with application in nonlinear analysis,” Ser. Math. Anal. Appl., 4, 175–181 (2002).MathSciNetGoogle Scholar
- 34.A. Halanay and D. Wexler, Teoria Calitativa a Systeme cu Impulduri, Edit. Repub. Socialist. Romania, Bucharest (1968).Google Scholar
- 35.J. Henderson and A. Ouahab, “Global existence results for impulsive functional differential inclusions with multiple delay in Fréchet spaces,” PanAmer. Math. J., 15, 73–89 (2005).MathSciNetMATHGoogle Scholar
- 36.J. Henderson and A. Ouahab, “Extrapolation spaces and controllability of impulsive semilinear functional differential inclusions with infinite delay in Fréchet spaces,” Appl. Anal., 85, 1255–1270 (2006).MathSciNetMATHCrossRefGoogle Scholar
- 37.J. Henderson and A. Ouahab, “Local and global existence and uniqueness results for second and higher order impulsive functional differential equations with infinite delay,” Austral. J. Appl. Math., 4, No. 6, 1–26 (2007).MathSciNetGoogle Scholar
- 38.S. Hu and N. S. Papageorgiou, Handbook of Multi-Valued Analysis, Vol. I: Theory, Kluwer, Dordrecht (1997).Google Scholar
- 39.S. Hu and N. S. Papageorgiou, Handbook of Multi-Valued Analysis. Vol. II: Applications, Kluwer, Dordrecht (2000).Google Scholar
- 40.M. Kamenskii, V. Obukhovskii, and P. Zecca, Condensing Multi-Valued Maps and Semilinear Differential Inclusions in Banach Spaces, de Gruyter, Berlin (2001).Google Scholar
- 41.M. Kisielewicz, Differential Inclusions and Optimal Control, Kluwer, Dordrecht (1991).Google Scholar
- 42.E. Kruger-Thiemr, “Formal theory of drug dosage regiments. 1,” J. Theor. Biol., 13, 212–235 (1966).CrossRefGoogle Scholar
- 43.E. Kruger-Thiemr, “Formal theory of drug dosage regiments. 2,” J. Theor. Biol., 23, 169–190 (1969).CrossRefGoogle Scholar
- 44.V. Lakshmikantham, D. D. Bainov, and P. S. Simeonov, Theory of Impulsive Differential Equations, World Scientific, Singapore (1989).MATHCrossRefGoogle Scholar
- 45.A. Lasota and Z. Opial, “An application of the Kakutani–Ky-Fan theorem in the theory of ordinary differential equations,” Bull. Acad. Pol. Sci. Sér. Sci. Math., Astron. Phys., 13, 781–786 (1965).MathSciNetMATHGoogle Scholar
- 46.G. Marino, P. Pielramala, and L. Muglia, “Impulsive neutral integrodifferential equations on unbounded intervals,” Mediterr. J. Math., 1, 3–42 (2004).MathSciNetCrossRefGoogle Scholar
- 47.V. D. Milman and A. A. Myshkis, “On the stability of motion in the presence of pulses,” Sib. Math. J., 1, 233–237 (1960).Google Scholar
- 48.B. Ricceri, “Une propriété topologique de l’ensemble des points fixes d’une contraction moultivoque à valeurs convexes,” Atti Accad. Naz. Linei. Cl. Sci. Fis., Mat. Natur. Rend. Mat. Appl., 283–286 (1987).Google Scholar
- 49.A. Ouahab, “Local and global existence and uniqueness results for impulsive differential equations with multiple delay,” J. Math. Anal. Appl., 67, 1027–1041 (2006).Google Scholar
- 50.A. Ouahab, “Existence and uniqueness results for impulsive functional differential equations with scalar multiple delay and infinite delay,” Nonlin. Anal., 67, 1027–1041 (2007).MathSciNetMATHCrossRefGoogle Scholar
- 51.S. G. Pandit and S. G. Deo, Differential Systems Involving Impulses, Springer, Berlin (1982).MATHGoogle Scholar
- 52.A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, New York (1983).MATHCrossRefGoogle Scholar
- 53.B. Przeradzki, “The existence of bounded solutions for differential equations in Hilbert spaces,” Ann. Pol. Math., 56, 103–121 (1992).MathSciNetMATHGoogle Scholar
- 54.A. M. Samoilenko and N. A. Perestyuk, Impulsive Differential Equations, World Scientific, Singapore (1995).MATHGoogle Scholar
- 55.N. A. Perestyuk, V. A. Plotnikov, A. M. Samoilenko, and N. V. Skripnik, Differential Equations with Impulse Effects: Multivalued Right-Hand Sides with Discontinuities, de Gruyter, Berlin (2011).Google Scholar
- 56.G. T. Stamov and I. M. Stamova, “Second method of Lyapunov and existence of integral manifolds for impulsive differential equations,” SUT J. Math., 32, 101–107 (1996).MathSciNetGoogle Scholar
- 57.A. A. Tolstonogov, Differential Inclusions in Banach Spaces, Kluwer, Dordrecht (2000).Google Scholar
- 58.K. Yosida, Functional Analysis, Springer, Berlin (1980).MATHCrossRefGoogle Scholar
- 59.D. Wagner, “Survey of measurable selection theorems,” SIAM J. Control Optim., 15, 859–903 (1977).MATHCrossRefGoogle Scholar
- 60.P. Weng, “Global existence in integrable space for impulsive FDE with P-Delay,” Dynam. Discrete Impulse Systems, 9, 321–337 (2002).MATHGoogle Scholar
- 61.B. Yan, “On L p loc-solutions of nonlinear impulsive Volterra integral equations in Banach spaces,” SUT J. Math., 33, 121–137 (1997).MathSciNetMATHGoogle Scholar
- 62.B. Yan, “The existence of positive solutions of nonlinear impulsive Fredholm integral equations in Banach spaces,” Dynam. Contin. Discrete Impulse Systems, 6, 289–300 (1999).MATHGoogle Scholar
- 63.Q. J. Zhu, “On the solution set of differential inclusions in Banach space,” J. Different. Equat., 93, No. 2, 213–237 (1991).MATHCrossRefGoogle Scholar
Copyright information
© Springer Science+Business Media New York 2012