Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

On generalized solutions of differential equations with several operator coefficients

  • 31 Accesses

We prove a theorem on the smoothness of generalized solutions of ordinary differential equations with several operator coefficients.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    O. B. Chernobai, “On generalized solutions of differential equations with operator coefficients,” Ukr. Mat. Zh., 58, No. 5, 715–720 (2006); English translation: Ukr. Math. J., 58, No. 5, 808–814 (2006).

  2. 2.

    M. L. Gorbachuk, “On representation of positive-definite operator functions,” Ukr. Mat. Zh., 17, No. 2, 29–46 (1965).

  3. 3.

    M. L. Gorbachuk and A. I. Kashpirovskii, “Weak solutions of differential equations in Hilbert space,” Ukr. Mat. Zh., 33, No. 4, 513–518 (1981); English translation: Ukr. Math. J., 33, No. 4, 392–396 (1981).

  4. 4.

    A. I. Kashpirovskii, Boundary Values of Solutions of Some Classes of Homogeneous Differential Equations in a Hilbert Space [in Russian], Candidate-Degree Thesis (Physics and Mathematics), Kiev (1981).

  5. 5.

    O. B. Chernobai, “Spectral representation for generalized operator-valued Toeplitz kernels,” Ukr. Mat. Zh., 57, No. 12, 1698–1710 (2005); English translation: Ukr. Math. J., 57, No. 12, 1995–2010 (2005).

  6. 6.

    Yu. M. Berezansky and O. B. Chernobai, “On the theory of generalized Toeplitz kernels,” Ukr. Mat. Zh., 52, No. 11, 1458–1472 (2000); English translation: Ukr. Math. J., 52, No. 11, 1661–1678 (2000).

  7. 7.

    M. L. Gorbachuk and V. I. Gorbachuk, Boundary-Value Problems for Differential Operator Equations [in Russian], Naukova Dumka, Kiev (1994).

  8. 8.

    A. N. Kochubei, “Fundamental solutions of differential-operator equations,” Differents. Uravn., 13, No. 9, 1588–1597 (1977).

  9. 9.

    Yu. M. Berezanskii, G. F. Us, and Z. G. Sheftel’, Functional Analysis [in Russian], Vyshcha Shkola, Kiev (1990).

  10. 10.

    E. Kamke, Differentialgleichungen Lösungsmethoden und Lösungen, Akademische Verlagsgesellschaft Geest, Leipzig (1959).

  11. 11.

    J. F. Treves, Lectures on Linear Partial Differential Equations with Constant Coefficients, Instituto de Matem´atica Pura e Aplicada, Rio de Janeiro (1961).

  12. 12.

    Yu. L. Daletskii and M. G. Krein, Stability of Solutions of Differential Equations in a Banach Space [in Russian], Nauka, Moscow (1970).

  13. 13.

    M. Yu. Tsar’kov, “Solvability of differential equations with operator coefficients,” J. Math. Sci., 103, No. 1, 131–134 (2001).

  14. 14.

    F. A. Akgun, “On the Green function of a second order differential equation with operator coefficient,” An. Univ. Oradea. Fasc. Mat., 13, 5–22 (2006).

Download references

Author information

Correspondence to O. B. Chernobai.

Additional information

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 64, No. 6, pp. 860–864, June, 2012.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chernobai, O.B. On generalized solutions of differential equations with several operator coefficients. Ukr Math J 64, 985–989 (2012). https://doi.org/10.1007/s11253-012-0694-1

Download citation

Keywords

  • Hilbert Space
  • Generalize Solution
  • Cauchy Problem
  • Fundamental Solution
  • English Translation