Ukrainian Mathematical Journal

, Volume 64, Issue 3, pp 456–469 | Cite as

Weak α-skew Armendariz ideals

  • H. A. Tavallaee
  • M. J. Nikmehr
  • M. Pazoki

We introduce the concept of weak α-skew Armendariz ideals and investigate their properties. Moreover, we prove that I is a weak α-skew Armendariz ideal if and only if I[x] is a weak α-skew Armendariz ideal. As a consequence, we show that R is a weak α-skew Armendariz ring if and only if R[x] is a weak α-skew Armendariz ring.


Positive Integer Prime Ideal Triangular Matrix Nilpotent Element Matrix Ring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. D. Anderson and V. Camillo, “Armendariz rings and Gaussian rings,” Commun. Algebra, 26, No. 7, 2265–2272 (1998).MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    E. P. Armendariz, “A note on extensions of Bear and P. P.-rings,” J. Austral. Math. Soc., 18, 470–473 (1974).MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    C. Y. Hong, N. K. Kim, and T. K. Kwak, “On skew Armendariz rings,” Commun. Algebra, 31, No. 1, 103–122 (2003).MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    C. Huh, H. K. Kim, and Y. Lee, “P.P.-rings and generalized P.P.-rings,” J. Pure Appl. Algebra, 167, No. 1, 37–52 (2002).MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    C. Huh, Y. Lee, and A. Smoktunowicz, “Armendariz rings and semicommutative rings,” J. Commun. Algebra, 30, No. 2, 751–761 (2002).MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    N. K. Kim and Y. Lee, “Armendariz rings and reduced rings,” J. Algebra, 223, No. 2, 477–488 (2000).MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    T. K. Lee and T. L. Wong, “On Armendariz rings,” Houston J. Math., 29, No. 3, 583–593 (2003).MathSciNetzbMATHGoogle Scholar
  8. 8.
    L. Liang, L. Wang, and Z. Liu, “On a generalization of semicommutative rings,” Taiwan. J. Math., 11, No. 5, 1359–1368 (2007).MathSciNetzbMATHGoogle Scholar
  9. 9.
    Z. Liu and R. Zhao, “On weak Armendariz rings,” Commun. Algebra, 34, No. 7, 2607–2616 (2006).zbMATHCrossRefGoogle Scholar
  10. 10.
    G. Mason, “Reflexive ideals,” Commun. Algebra, 9, No. 17, 1709–1724 (1981).zbMATHCrossRefGoogle Scholar
  11. 11.
    M. B. Rege and S. Chhawchharia, “Armendariz rings,” Proc. Jpn. Acad. Ser. A. Math. Sci., 73, No. 1, 14–17 (1997).MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • H. A. Tavallaee
    • 1
  • M. J. Nikmehr
    • 2
  • M. Pazoki
    • 1
  1. 1.Karaj BranchIslamic Azad UniversityKarajIran
  2. 2.K. N. Toosi University of TechnologyTehranIran

Personalised recommendations