Advertisement

Ukrainian Mathematical Journal

, Volume 63, Issue 11, pp 1781–1786 | Cite as

Optimization of interval formulas for approximate integration of set-valued functions monotone with respect to inclusion

  • V. V. Babenko
BRIEF COMMUNICATIONS

The best interval quadrature formula is obtained for the class of convex set-valued functions defined on the segment [0, 1] and monotone with respect to inclusion.

Keywords

Convex Subset Quadrature Formula Compact Convexe Duality Theorem Nondecreasing Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Kiefer, “Optimum sequential search and approximation methods under minimum regularity assumptions,” J. Soc. Indust. Appl. Math., 5, No. 3, 105–136 (1957).MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    V. F. Babenko and S. V. Borodachev, “On optimization of cubature monotone functions of several variables,” Visn. Dnipropetr. Univ., Ser. Mat., Issue 7, 3–7 (2002).Google Scholar
  3. 3.
    V. B. Babenko and V. V. Babenko, “Optimization of approximate integration of set-valued functions monotone with respect to inclusion,” Ukr. Mat. Zh., 63, No. 2, 147–155 (2011); English translation: Ukr. Math. J., 63, No. 2, 177–186 (2011).Google Scholar
  4. 4.
    M. Hukuhara, “Intégration des applications mesurables dont la valeur est un compact convexe,” Funkc. Ekvac., 10, 205–223 (1967).MathSciNetzbMATHGoogle Scholar
  5. 5.
    N. P. Korneichuk, Extremal Problems in Approximation Theory [in Russian], Nauka, Moscow (1976).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2012

Authors and Affiliations

  • V. V. Babenko
    • 1
  1. 1.DnepropetrovskUkraine

Personalised recommendations