Advertisement

Ukrainian Mathematical Journal

, Volume 63, Issue 9, pp 1336–1348 | Cite as

Laplacian with respect to a measure on a Hilbert space and an L 2-version of the Dirichlet problem for the Poisson equation

  • Yu. V. Bogdanskii
Article
  • 41 Downloads

We propose a version of the Laplace operator for functions on a Hilbert space with measure. In terms of this operator, we investigate the Dirichlet problem for the Poisson equation.

Keywords

Hilbert Space Invariant Measure Dirichlet Problem Laplace Operator Poisson Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Gross, “Potential theory on Hilbert space,” J. Funct. Anal., 1, 123–181 (1967).zbMATHCrossRefGoogle Scholar
  2. 2.
    Yu. L. Daletskii, “Infinite-dimensional elliptic operators and related parabolic equations,” Usp. Mat. Nauk, 22, No. 4, 3–54 (1967).MathSciNetGoogle Scholar
  3. 3.
    P. Lévy, Problèmes Concrets d’Analyse Fonctionnelle, Gauthier-Villars, Paris (1951).zbMATHGoogle Scholar
  4. 4.
    A. S. Nemirovskii and G. E. Shilov, “On the axiomatic description of the Laplace operator for functions on a Hilbert space,” Funkts. Anal. Prilozhen., 3, No. 3, 79–85 (1969).Google Scholar
  5. 5.
    Yu. V. Bogdanskii, “The Cauchy problem for parabolic equations with essentially infinite-dimensional elliptic operators,” Ukr. Mat. Zh., 29, No. 6, 781–784 (1977); English translation: Ukr. Math. J., 29, No. 6, 578–581 (1977).MathSciNetCrossRefGoogle Scholar
  6. 6.
    L. Accardi and O. G. Smolianov, “On Laplacians and traces,” Conf. Sem. Univ. Bari, 250, 1–25 (1993).zbMATHGoogle Scholar
  7. 7.
    L. Accardi, A. Barhoumi, and H. Ouerdiane, “A quantum approach to Laplace operators,” Infin. Dimen. Anal. Quantum Probab. Relat. Top., 9, 215–248 (2006).MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    L. Accardi, U. C. Ji, and K. Saito, “Exotic Laplacians and associated stochastic processes,” Infin. Dimen. Anal. Quantum Probab. Relat. Top., 12, 1–19 (2009).MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    K. Yosida, Functional Analysis, Springer, Berlin (1965).zbMATHGoogle Scholar
  10. 10.
    S. Lang, Introduction to Differentiable Manifolds [Russian translation], Mir, Moscow (1967).Google Scholar
  11. 11.
    V. I. Bogachev, Differentiable Measures and Malliavin Calculus [in Russian], RKhD, Moscow (2008).Google Scholar
  12. 12.
    V. I. Bogachev, Foundations of Measure Theory [in Russian], Vol. 2, RKhD, Moscow (2006).Google Scholar
  13. 13.
    Yu. V. Bogdans’kyi, “Divergence-free version of the Gauss–Ostrogradskii formula on infinite-dimensional manifolds,” Nauk. Visti NTUU “KPI,” No. 4, 132–138 (2008).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2012

Authors and Affiliations

  • Yu. V. Bogdanskii
    • 1
  1. 1.KyivUkraine

Personalised recommendations