Ukrainian Mathematical Journal

, Volume 63, Issue 6, pp 914–926 | Cite as

Truncated matrix trigonometric problem of moments: operator approach

  • S. M. Zagorodnyuk
Article

We study the truncated matrix trigonometric problem of moments. A parametrization of all solutions of this problem (both in the nondegenerate and degenerate cases) is obtained by using the operator approach. This parametrization establishes the one-to-one correspondence between a certain class of analytic functions and all solutions of the problem. We use the important Chumakin results on the generalized resolvents of isometric operators.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. I. Akhiezer, Classical Problem of Moments and Some Related Problems of Analysis [in Russian], Fizmatgiz, Moscow (1961).Google Scholar
  2. 2.
    G.-N. Chen and Y.-J. Hu, “On the multiple Nevanlinna–Pick matrix interpolation in the class φ p and the Carathéodory matrix coefficient problem,” Linear Algebra Appl., 283, 179–203 (1998).MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    B. Fritzsche and B. Kirstein, “The matricial Carathéodory problem in both nondegenerate and degenerate cases,” in: Operator Theory: Advances and Applications, Vol. 165, Birkhäuser, Basel (2006), pp. 251–290.Google Scholar
  4. 4.
    M. G. Krein and A. A. Nudel’man, Markov Problem of Moments and Extremal Problems. P. L. Chebyshev’s and A. A. Markov’s Ideas and Problems and Their Subsequent Development [in Russian], Nauka, Moscow (1973).Google Scholar
  5. 5.
    M. E. Chumakin, “Solutions of the truncated trigonometric problem of moments,” Uchen. Zap. Ul’yan. Ped. Inst., 20, Issue 4, 311–355 (1966).Google Scholar
  6. 6.
    M. E. Chumakin, “On the generalized resolvents of an isometric operator,” Dokl. Akad. Nauk SSSR, 154, No. 4, 791–794 (1964).MathSciNetMATHGoogle Scholar
  7. 7.
    M. E. Chumakin, “Generalized resolvents of isometric operators,” Sib. Mat. Zh., 8, No. 4, 876–892 (1967).MATHGoogle Scholar
  8. 8.
    T. Ando, “ Truncated moment problems for operators,” Acta Sci. Math. (Szeged), 31, No. 4, 319–334 (1970).MathSciNetMATHGoogle Scholar
  9. 9.
    O. T. Inin, “Truncated matrix trigonometric problem of moments,” Izv. Vyssh. Uchebn. Zaved., Ser. Mat., 84, No. 5, 49–57 (1969).MathSciNetGoogle Scholar
  10. 10.
    Yu. M. Berezanskii, Expansions in Eigenfunctions of Self-Adjoint Operators [in Russian], Naukova Dumka, Kiev (1965).Google Scholar
  11. 11.
    S. M. Zagorodnyuk, “Positive-definite kernels satisfying difference equations,” Meth. Funct. Anal. Top., 16, No. 1, 83–100 (2010).MathSciNetMATHGoogle Scholar
  12. 12.
    S. M. Zagorodnyuk, “On the strong matrix Hamburger moment problem,” Ukr. Mat. Zh., 62, No. 4, 471–482 (2010); English translation: Ukr. Math. J., 62, No. 4, 537–551 (2010).CrossRefGoogle Scholar
  13. 13.
    S. M. Zagorodnyuk, “A description of all solutions of the matrix Hamburger moment problem in a general case,” Meth. Funct. Anal. Topol., 16, No. 3, 271–288 (2010).MathSciNetMATHGoogle Scholar
  14. 14.
    Yu. M. Berezansky, “Some generalizations of the classical moment problem,” Integr. Equat. Operator Theory, 44, 255–289 (2002).MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    M. M. Malamud and S. M. Malamud, “Operator measures in Hilbert spaces,” Alg. Anal., 15, No. 3, 1–52 (2003).MathSciNetGoogle Scholar
  16. 16.
    M. Rosenberg, “The square-integrability of matrix-valued functions with respect to a nonnegative Hermitian measure,” Duke Math. J., 31, 291–298 (1964).MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    N. I. Akhiezer and I. M. Glazman, Theory of Linear Operators in Hilbert Spaces [in Russian], Gostekhteorizdat, Moscow (1950).Google Scholar
  18. 18.
    N. Akhiezer and M. Krein, On Some Problems of the Theory of Moments [in Russian], GONTI, Kharkov (1938).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2011

Authors and Affiliations

  • S. M. Zagorodnyuk
    • 1
  1. 1.KharkovUkraine

Personalised recommendations