Advertisement

Ukrainian Mathematical Journal

, Volume 63, Issue 5, pp 833–837 | Cite as

Bidual of r-algebras

  • R. Yilmaz
Article

We prove that the order continuous bidual of an Archimedean r-algebra is a Dedekind complete r-algebra with respect to the Arens multiplications.

Keywords

Operator Theory Function Class Positive Operator Vector Lattice Mathematical Journal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. D. Aliprantis and O. Burkinshaw, Positive Operators, Academic Press (1985).Google Scholar
  2. 2.
    R. Arens, “Operations induced in function classes,” Monatsh. Math., 55, 1–19 (1951).MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    R. Arens, “The adjoint of a bilinear operation,” Proc. Amer. Math. Soc., 2, 839–848 (1951).MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    S. J. Bernau and C. B. Huijsmans, “The order bidual of almost f-algebras and d-algebras,” Trans. Amer. Math. Soc., 347, 4259–4275 (1995).MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    G. Birkhoff and R. S. Pierce, “Lattice-ordered rings,” An. Acad. Brasil. Ciénc., 28, 41–49 (1956).MathSciNetGoogle Scholar
  6. 6.
    G. Birkhoff, “Lattice theory,” Amer. Math. Soc. Colloq., No. 25 (1967).Google Scholar
  7. 7.
    K. Boulabiar and F. Hadded, “A class of lattice ordered algebras,” Algebra Univ., 50, 305–323 (2003).MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    E. Chil, “Generalized almost f-algebras,” Bull. Belg. Math. Soc. Simon Stevin., 16, No. 2, 223–234 (2009).MathSciNetzbMATHGoogle Scholar
  9. 9.
    V. Kudláček, “On some types of ℓ-rings,” Sb. VUT Brně, 1–2, 179–181 (1962).Google Scholar
  10. 10.
    W. A. J. Luxemburg and A. C. Zaanen, Riesz Spaces I, North-Holland (1971).Google Scholar
  11. 11.
    R. Yilmaz, “The class of r-algebras” (submitted).Google Scholar
  12. 12.
    A. C. Zaanen, Introduction to Operator Theory in Riesz Spaces, Springer (1997).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2010

Authors and Affiliations

  • R. Yilmaz
    • 1
  1. 1.Rize UniversityRizeTurkey

Personalised recommendations