Advertisement

Ukrainian Mathematical Journal

, 63:617 | Cite as

Landau–Kolmogorov problem for a class of functions absolutely monotone on a finite interval

  • D. S. Skorokhodov
Article
  • 39 Downloads

We solve the Landau–Kolmogorov problem for a class of functions absolutely monotone on a finite interval. For this class of functions, new exact additive inequalities of the Kolmogorov type are obtained.

Keywords

Orlicz Space Finite Interval Sign Alternation Successive Derivative Kolmogorov Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    E. Landau, “Einige Ungleichungen f¨ur zweimal differenzierbare Funktionen,” Proc. London Math. Soc., 13, 43–49 (1913).zbMATHCrossRefGoogle Scholar
  2. 2.
    C. K. Chui and P. W. Smith, “A note on Landau’s problem for bounded intervals,” Amer. Math. Mon., 82, 927–929 (1975).MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    A. I. Zvyagintsev and A. Ya. Lepin, “On Kolmogorov inequalities between upper bounds of functional derivatives for n = D 3,” Latv. Mat. Ezhegod., 26, 176–181 (1982).MathSciNetzbMATHGoogle Scholar
  4. 4.
    M. Sato, “The Landau inequality for bounded intervals with ∥f (3)∥ finite,” J. Approxim. Theory, 34, 159–166 (1982).zbMATHCrossRefGoogle Scholar
  5. 5.
    M. K. Kwong and A. Zettl, Norm Inequalities for Derivatives and Differences, Springer, Berlin (1992).zbMATHGoogle Scholar
  6. 6.
    A. Yu. Shadrin, “To the Landau–Kolmogorov problem on a finite interval,” in: B. Bojanov (editor), Open Problems in Approximation Theory, SCT, Singapore (1994), pp. 192–204.Google Scholar
  7. 7.
    B. Bojanov and N. Naidenov, “An extension of the Landau–Kolmogorov inequality. Solution of a problem of Erdős,” J. D’Anal. Math., 78, 263–280 (1999).MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    B. Bojanov and N. Naidenov, “Examples of Landau–Kolmogorov inequality in integral norms on a finite interval,” J. Approxim. Theory, 117, 55–73 (2002).MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Yu. V. Babenko, “Exact inequalities of Landau type for functions with second derivatives from the Orlicz space,” Vestn. Dnepropetr. Univ., Ser. Mat., 2, 18–22 (2000).Google Scholar
  10. 10.
    Yu. V. Babenko, “Pointwise inequalities of Landau–Kolmogorov type for functions defined on a finite segment,” Ukr. Mat. Zh., 53, No. 2, 238–243 (2001); English translation: Ukr. Math. J., 53, No. 2, 270–275 (2001).MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    N. P. Korneichuk, V. F. Babenko, and A. A. Ligun, Extremal Properties of Polynomials and Splines [in Russian], Naukova Dumka, Kiev (1992).Google Scholar
  12. 12.
    V. F. Babenko, N. P. Korneichuk, V. A. Kofanov, and S. A. Pichugov, Inequalities for Derivatives and Their Applications [in Russian], Naukova Dumka, Kiev (2003).Google Scholar
  13. 13.
    V. F. Babenko and T. M. Rassias, “On exact inequalities of Hardy–Littlewood–Pólya type,” J. Math. Anal. Appl., 245, 570–593 (2000).MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    A. M. Fink, “Kolmogorov–Landau inequalities for monotone functions,” J. Math. Appl., 90, 251–258 (1992).MathSciNetGoogle Scholar
  15. 15.
    D. V. Widder, The Laplace Transform, Princeton University, Princeton (1946).Google Scholar
  16. 16.
    D. S. Skorokhodov, “On the Landau–Kolmogorov problem for classes of functions absolutely monotone on a segment,” in: Abstracts of the Mathematical Congress (August 27–29, 2009, Kyiv) [in Ukrainian], Kyiv (2009).Google Scholar
  17. 17.
    M. G. Krein and A. A. Nudel’man, Markov Moment Problem and Extremal Problems [in Russian], Nauka, Moscow (1973).Google Scholar
  18. 18.
    A. N. Kolmogorov, “On inequalities between upper bounds of successive derivatives of an arbitrary function on an infinite interval,” Nauch. Zap. Mosk. Univ., 30, 3–16 (1939).Google Scholar
  19. 19.
    A. N. Kolmogorov, “On inequalities between upper bounds of successive derivatives of an arbitrary function on an infinite interval,” in: A. N. Kolmogorov, Selected Works. Mathematics and Mechanics [in Russian] (1985), pp. 252–263.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2011

Authors and Affiliations

  • D. S. Skorokhodov
    • 1
  1. 1.Dnepropetrovsk National UniversityDnepropetrovskUkraine

Personalised recommendations