Advertisement

On some properties of Gel’fond–Leont’ev generalized integration operators

  • N. E. Linchuk
  • S. S. Linchuk
Article
  • 31 Downloads

In the class of linear continuous operators that act in the spaces of functions analytic in domains, we describe, in various forms, isomorphisms that commute with a power of the Gel’fond–Leont’ev generalized integration operator. We also obtain representations of all closed subspaces of the space of analytic functions that are invariant with respect to a power of the Gel’fond–Leont’ev generalized integration operator.

Keywords

Analytic Function Complex Plane Integration Operator Invariant Subspace Closed Subspace 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    N. E. Linchuk, “Representation of commutants of the generalized Gel’fond–Leont’ev integration operator,” Izv. Vyssh. Uchebn. Zaved., Ser. Mat., No. 5, 72–74 (1985).Google Scholar
  2. 2.
    I. H. Dimovski, Convolutional Calculus, Kluwer, Dordrecht (1990).zbMATHGoogle Scholar
  3. 3.
    T. I. Zvozdetskii and S. S. Linchuk, “Generalization of Berg–Dimovski convolution in spaces of analytic functions,” Ukr. Mat. Zh., 48, No. 7, 910–919 (1996); English translation: Ukr. Math. J., 48, No. 7, 1028–1038 (1996).MathSciNetCrossRefGoogle Scholar
  4. 4.
    N. E. Linchuk, “Invariant subspaces of generalized integration operators in a direct sum of spaces of analytic functions,” Nauk. Visn. Cherniv. Univ., Ser. Mat., Issue 191–192, 76–78 (2004).Google Scholar
  5. 5.
    T. I. Zvozdetskyi, “On the equivalence of some operators related to generalized Gel’fond–Leont’ev integration and differentiation in spaces of analytic functions,” Ukr. Math. Bull., 2, No. 4, 495–506 (2005).MathSciNetGoogle Scholar
  6. 6.
    N. I. Nagnibida, “Isomorphisms of the space of functions analytic in the disk that commute with a power of the integration operator,” Teor. Funkts. Funkts. Anal. Prilozhen., Issue 6, 184–188 (1968).Google Scholar
  7. 7.
    M. Yu. Tsar’kov, “Isomorphisms of analytic spaces that commute with a power of the integration operator,” Teor. Funkts. Funkts. Anal. Prilozhen., Issue 13, 54–63 (1971).Google Scholar
  8. 8.
    N. K. Nikol’skii, “Invariant subspaces and bases of generalized antiderivatives in the sense of A. O. Gel’fond and A. F. Leont’ev,” Mat. Issled., 3, Issue 7, 101–116 (1968).MathSciNetGoogle Scholar
  9. 9.
    N. I. Nagnibida, “On some properties of generalized integration operators in an analytic space,” Sib. Mat. Zh., 7, No. 6, 1306–1318 (1966).MathSciNetCrossRefGoogle Scholar
  10. 10.
    V. A. Tkachenko, “Invariant subspaces and unicellularity of generalized integration operators in spaces of analytic functionals,” Mat. Zametki, 22, No. 2, 221–230 (1977).MathSciNetzbMATHGoogle Scholar
  11. 11.
    N. K. Nikol’skii, “Invariant subspaces in operator theory and theory of functions,” in: VINITI Series in Mathematical Analysis, Vol. 12, VINITI, Moscow (1974), pp. 199–412.Google Scholar
  12. 12.
    M. I. Nagnybida, Classical Operators in Spaces of Analytic Functions [in Ukrainian], Institute of Mathematics, Ukrainian National Academy of Sciences, Kyiv, (1995).Google Scholar
  13. 13.
    G. M. Berezovskaya and N. I. Berezovskii, “Description of the isomorphisms of spaces of holomorphic functions that commute with powers of a multiplication operator,” Ukr. Mat. Zh., 36, No. 5, 611–615 (1984); English translation: Ukr. Math. J., 36, No. 5, 456–459 (1984).MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    P. R. Halmos, Hilbert Space Problem Book, Van Nostrand, Princeton (1967).zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2011

Authors and Affiliations

  • N. E. Linchuk
    • 1
  • S. S. Linchuk
    • 1
  1. 1.ChernivtsiUkraine

Personalised recommendations