Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Estimation of dilatations for mappings more general than quasiregular mappings

  • 26 Accesses

We consider the so-called ring Q-mappings, which are natural generalizations of quasiregular mappings in a sense of Väisälä’s geometric definition of moduli. It is shown that, under the condition of nondegeneracy of these mappings, their inner dilatation is majorized by a function Q(x) to within a constant depending solely on the dimension of the space.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    J. Väisälä, Lectures on n-Dimensional Quasiconformal Mappings, Springer, Berlin (1971).

  2. 2.

    O. Martio, V. Ryazanov, U. Srebro, and E. Yakubov, Moduli in Modern Mapping Theory, Springer, New York (2009).

  3. 3.

    O. Lehto and K. Virtanen, Quasiconformal Mappings in the Plane, Springer, New York (1973).

  4. 4.

    Yu. F. Strugov, “Compactness of the families of mappings quasiconformal in the mean,” Dokl. Acad. Nauk SSSR, 243, No. 4, 859–861 (1978).

  5. 5.

    C. J. Bishop, V. Ya. Gutlyanskii, O. Martio, and M. Vuorinen, “On conformal dilatation in space,” Int. J. Math. Math. Sci., 22, 1397–1420 (2003).

  6. 6.

    V. M. Miklyukov, Conformal Mappings of Irregular Surfaces and Their Applications [in Russian], Volgograd University, Volgograd (2005).

  7. 7.

    F. W. Gehring, “Rings and quasiconformal mappings in space,” Trans. Amer. Math. Soc., 103, 353–393 (1962).

  8. 8.

    Yu. G. Reshetnyak, Space Mappings with Bounded Distortion [in Russian], Nauka, Novosibirsk (1982).

  9. 9.

    S. Rickman, “Quasiregular mappings,” Results Math. Relat. Areas, 26, No. 3 (1993).

  10. 10.

    R. Salimov, “Absolute continuity on lines and the differentiability of one generalization of quasiconformal mappings,” Izv. Ross. Acad. Nauk, Ser. Mat., 72, No. 5, 141–148 (2008).

  11. 11.

    R. R. Salimov and E. A. Sevost’yanov, “Theory of ring Q-mappings in geometric function theory,” Mat. Sb., 201, No. 6, 131–158 (2010).

  12. 12.

    V. I. Kruglikov, “Capacities of capacitors and space mappings quasiconformal in the mean,” Mat. Sb. 130, No. 2, 185–206 (1986).

  13. 13.

    G. T. Whyburn, Analytic Topology, American Mathematical Society, Providence, RI (1942).

  14. 14.

    S. Saks, Theory of the Integral, Dover, New York (1937).

Download references

Author information

Correspondence to R. R. Salimov.

Additional information

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 62, No. 11, pp. 1531–1537, November, 2010.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Salimov, R.R., Sevost’yanov, E.A. Estimation of dilatations for mappings more general than quasiregular mappings. Ukr Math J 62, 1775–1782 (2011). https://doi.org/10.1007/s11253-011-0467-2

Download citation

Keywords

  • Quasiconformal Mapping
  • Maximum Elevation
  • Quasiregular Mapping
  • Lebesgue Measurable Function
  • Nonnegative Measurable Function