Advertisement

Ukrainian Mathematical Journal

, Volume 61, Issue 12, pp 1923–1945 | Cite as

Asymptotic expansions of solutions of the first initial boundary-value problem for Schrödinger systems in domains with conical points. II

  • N. M. Hung
  • C. T. Anh
Article

We consider asymptotic expansions of solutions of the first initial boundary-value problem for strong Schrödinger systems near a conical point of the boundary of a domain.

Keywords

Generalize Solution Asymptotic Expansion Dirichlet Problem Space Versus Differentiable Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. A. Ladyzhenskaya, Boundary-Value Problems of Mathematical Physics [in Russian], Nauka, Moscow (1973).Google Scholar
  2. 2.
    J. L. Lions and E. Magenes, Problémes Aux Limites Non Homogénes et Applications, Dunod, Paris (1968).zbMATHGoogle Scholar
  3. 3.
    V. A. Kondrat’ev, “Boundary-value problems for elliptic equations in domain with conic or corner points,” Tr. Mosk. Mat. Obshch., 16, 209–292 (1967).zbMATHGoogle Scholar
  4. 4.
    V. A. Kondrat’ev and O. A. Oleinik, “Boundary-value problems for partial differential equations in nonsmooth domains,” Usp. Mat. Nauk, 38, No. 2, 3–76 (1983).zbMATHMathSciNetGoogle Scholar
  5. 5.
    V. A. Kozlov, V. G. Maz’ya, and J. Rossmann, Elliptic Boundary-Value Problems in Domains with Point Singularities, American Mathematical Society, Providence, RI (1997).zbMATHGoogle Scholar
  6. 6.
    S. A. Nazarov and B. A. Plamenevskii, Elliptic Problems in Domains with Piecewise-Smooth Boundaries, de Gruyter, Berlin–New York (1994).zbMATHGoogle Scholar
  7. 7.
    I. I. Mel’nikov, “Singularities of a solution of a mixed problem for second-order hyperbolic equations in domains with piecewise-smooth boundary,” Usp. Mat. Nauk, 37, No. 1, 149–150 (1982).zbMATHGoogle Scholar
  8. 8.
    D. V. Ngok, “Asymptotics of a solution of a mixed problem for a second-order parabolic equation in a neighborhood of a corner point of the boundary,” Vestn. Mosk. Univ. Ser. Mat., Mekh., 34–36 (1984).Google Scholar
  9. 9.
    G. Eskin, “The wave equation in a wedge with general boundary conditions,” Commun. Part. Different. Equat., 17, No. 1-2, 99–160 (1992).zbMATHMathSciNetGoogle Scholar
  10. 10.
    A. Yu. Kokotov and B. A. Plamenevskii, “On the Cauchy–Dirichlet problem for hyperbolic systems in a wedge,” Alg. Analiz, 11, No. 3, 140–195 (1999); English translation: St.Petersburg Math. J., 11, No. 3, 497–534 (2000).MathSciNetGoogle Scholar
  11. 11.
    A. Yu. Kokotov and B. A. Plamenevskii, “On asymptotics of solutions of the Neumann problem for hyperbolic systems in domains with conical points,” Alg. Analiz, 16, No. 3, 56–98 (2004); English translation: St.Petersburg Math. J., 16, No. 3, 477–506 (2005).MathSciNetGoogle Scholar
  12. 12.
    S. I. Matyukevich and B. A. Plamenevskii, “Elastodynamics in domains with edges,” Alg. Analiz, 18, No. 3, 158–233 (2006); English translation: St.Petersburg Math. J., 18, No. 3, 459–510 (2007).MathSciNetGoogle Scholar
  13. 13.
    O. A. Ladyzhenskaya, “On nonstationary operator equations and their applications to linear problems of mathematical physics,” Mat. Sb., 45(87), No. 2, 123–158 (1958).MathSciNetGoogle Scholar
  14. 14.
    N. M. Hung, “First initial boundary-value problem for Schrödinger systems in nonsmooth domains,” Differents. Uravn., 34, 1546–1556 (1998).Google Scholar
  15. 15.
    N. M. Hung and C. T. Anh, “On the solvability of the first initial boundary-value problem for Schrödinger systems in infinite cylinders,” Vietnam J. Math., 32, No. 1, 41–48 (2004).zbMATHMathSciNetGoogle Scholar
  16. 16.
    N. M. Hung and C. T. Anh, “On the smoothness of solutions of the first initial boundary-value problem for Schrödinger systems in domains with conical points,” Vietnam J. Math., 33, No. 2, 135–147 (2005).zbMATHMathSciNetGoogle Scholar
  17. 17.
    N. M. Hung and C. T. Anh, “Asymptotic expansions of solutions of the first initial boundary-value problem for Schrödinger systems in domains with conical points. I,” Acta Math. Vietnam, 30, No. 3, 141–160 (2005).MathSciNetGoogle Scholar
  18. 18.
    N. M. Hung and C. T. Anh, “On the smoothness of solutions of the first initial boundary-value problem for Schrödinger systems in infinite cylinders,” South. Asian Bull. Math., 30, No. 3, 461–471 (2006).zbMATHMathSciNetGoogle Scholar
  19. 19.
    G. Fichera, Existence Theorems in Elasticity [Russian translation], Mir, Moscow (1974).Google Scholar
  20. 20.
    V. G. Maz’ya and B. A. Plamenevskii, “On the coefficients in the asymptotics of solutions of elliptic boundary-value problems in domains with conical points,” Math. Nachr., 76, 29–60 (1977).zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    V. M. Eni, “Stability of the root number of an analytic operator function and perturbations of its characteristic numbers and eigenvectors,” Dokl. Akad. Nauk SSSR, 173, No. 6, 1251–1254 (1967).MathSciNetGoogle Scholar
  22. 22.
    V. G. Maz’ya and B. A. Plamenevskii, “Elliptic boundary-value problems on manifolds with singularities,” Probl. Math. Anal., 85–292 (1977).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2009

Authors and Affiliations

  • N. M. Hung
    • 1
  • C. T. Anh
    • 1
  1. 1.Hanoi University of EducationHanoiVietnam

Personalised recommendations