We prove that max |*p*′(*x*)|, where *p* runs over the set of all algebraic polynomials of degree not higher than *n* ≥ 3 bounded in modulus by 1 on [−1, 1], is not lower than \( {{\left( {n - 1} \right)} \mathord{\left/{\vphantom {{\left( {n - 1} \right)} {\sqrt {1 - {x^2}} }}} \right.} {\sqrt {1 - {x^2}} }} \) for all *x* ∈ (−1, 1) such that \( \left| x \right| \in \bigcup\nolimits_{k = 0}^{\left[ {{n \mathord{\left/{\vphantom {n 2}} \right.} 2}} \right]} {\left[ {\cos \frac{{2k + 1}}{{2\left( {n - 1} \right)}}\pi, \cos \frac{{2k + 1}}{{2n}}\pi } \right]} \).

This is a preview of subscription content, log in to check access.

## References

- 1.
V. M. Tikhomirov,

*Some Problems of Approximation Theory*[in Russian], Moscow University, Moscow (1976). - 2.
B. D. Bojanov, “Markov-type inequalities for polynomials and splines,” in: C. K. Chui, L. L. Schumaker, J. Stökler (editors),

*Approximation Theory, Vol X: Abstract and Classical Analysis*, Vanderbilt University Press (2002), pp. 31–90. - 3.
V. A. Markov,

*On Functions Least Deviating from Zero in a Given Interval*[in Russian], St. Petersburg (1892). - 4.
L. S. Avvakumova, “Comparison of integral functionals depending on the second derivative of Chebyshev and Zolotarev polynomials,”

*East J. Approxim.*,**5**, No. 2, 151-182 (1999). - 5.
E. I. Zolotarev,

*Complete Collection of Works*[in Russian], Vol. 2, Izd. Akad. Nauk SSSR, Leningrad (1932).

## Author information

### Affiliations

### Corresponding author

Correspondence to A. I. Podvysotskaya.

## Additional information

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 61, No. 5, pp. 711–715, May, 2009.

## Rights and permissions

## About this article

### Cite this article

Podvysotskaya, A.I. Lower bound in the Bernstein inequality for the first derivative of algebraic polynomials.
*Ukr Math J* **61, **847 (2009). https://doi.org/10.1007/s11253-009-0237-6

Received:

Published:

### Keywords

- Approximation Theory
- Extreme Problem
- Classical Analysis
- Chebyshev Polynomial
- Integral Functional