Ukrainian Mathematical Journal

, Volume 60, Issue 8, pp 1200–1209 | Cite as

Problem of impulsive regulator for one dynamical system of the Sobolev type

  • L. A. Vlasenko
  • A. G. Rutkas
  • A. M. Samoilenko
Article

We establish conditions for the existence of an optimal impulsive control for an implicit operator differential equation with quadratic cost functional. The results obtained are applied to the filtration problem.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. N. Krasovskii, Theory of Optimal Control by Motion. Linear Systems [in Russian], Nauka, Moscow (1968).Google Scholar
  2. 2.
    A. G. Butkovskii, Structural Theory of Distributed Systems [in Russian], Nauka, Moscow (1977).Google Scholar
  3. 3.
    A. M. Samoilenko and N. A. Perestyuk, Impulsive Differential Equations [in Russian], Vyshcha Shkola, Kiev (1987).Google Scholar
  4. 4.
    S. I. Lyashko, “Impulsive optimal control by linear systems with distributed parameters,” Dokl. Akad. Nauk SSSR, 276, No. 2, 285–287 (1984).MathSciNetGoogle Scholar
  5. 5.
    S. L. Sobolev, “Cauchy problem for a special case of systems of the non-Kovalevskaya type,” Dokl. Akad. Nauk SSSR, 82, No. 2, 205–208 (1952).MATHMathSciNetGoogle Scholar
  6. 6.
    A. G. Rutkas, “Cauchy problem for the equation Ax′(t) + Bx(t) = f(t),” Differents. Uravn., 11, No. 11, 1996–2010 (1975).MATHMathSciNetGoogle Scholar
  7. 7.
    L. A. Vlasenko, Evolutionary Models with Implicit and Degenerate Differential Equations [in Russian], Sistemnye Tekhnologii, Dnepropetrovsk (2006).Google Scholar
  8. 8.
    J.-L. Lions and E. Magenes, Problémes aux Limites non Homogénes et Applications, Dunod, Paris (1968).MATHGoogle Scholar
  9. 9.
    G. I. Barenblatt, Yu. P. Zheltov, and I. N. Kochina, “On main representations in the theory of filtration of homogenous liquids in cracked grounds,” Prikl. Mat. Mekh., 24, 852–864 (1960).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2008

Authors and Affiliations

  • L. A. Vlasenko
    • 1
  • A. G. Rutkas
    • 1
  • A. M. Samoilenko
    • 1
  1. 1.Kharkov National UniversityKharkovUkraine
  2. 2.Institute of MathematicsUkrainian National Academy of SciencesKievUkraine

Personalised recommendations