Ukrainian Mathematical Journal

, Volume 60, Issue 5, pp 708–715 | Cite as

Piecewise-smooth+ version of the implicit-function theorem

  • V. M. Miklyukov
Article
  • 31 Downloads

We introduce a class of piecewise-smooth+ mappings and prove the implicit-function theorem for this class. The proof is based on the theorem on global homeomorphism, which follows from the well-known Chernavskii theorem.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. A. Bobylev, S. A. Ivanenko, and I. G. Ismailov, “Several remarks on homeomorphic mappings,” Mat. Zametki, 60, Issue 4, 593–596 (1996).MathSciNetGoogle Scholar
  2. 2.
    N. A. Bobylev, S. A. Ivanenko, and A. V. Kazunin, “On piecewise-smooth homeomorphic mappings of bounded domains and their applications to the theory of nets,” Zh. Vychisl. Mat. Mat. Fiz., 43, No. 6, 808–817 (2003).MATHMathSciNetGoogle Scholar
  3. 3.
    M. F. Prokhorov, “Some criteria for homeomorphisms,” in: Proceedings of the 38th Youth School-Conference “Algebra and Topology” [in Russian], Ekaterinburg (2007), pp. 65–69.Google Scholar
  4. 4.
    V. M. Miklyukov, “Efficient methods for the verification of the bijectivity of a piecewise-smooth mapping,” in: Proceedings of the Seminar “Superslow Processes” [in Russian], Issue 2, Volgograd University, Volgograd (2007), pp. 123–135.Google Scholar
  5. 5.
    H. Cartan, Calcul Différentiel Formes Différentielles, Hermann, Paris (1967).Google Scholar
  6. 6.
    I. V. Zhuravlev and A. Yu. Igumnov, “On implicit functions,” in: Proceedings of the Chair of Mathematical Analysis and the Theory of Functions of the Volgograd University [in Russian], Volgograd University, Volgograd (2002), pp. 41–46.Google Scholar
  7. 7.
    S. G. Krantz and H. R. Parks, The Implicit Function Theorem. History, Theory, and Applications, Springer, New York (2002).MATHGoogle Scholar
  8. 8.
    V. M. Miklyukov, Geometric Analysis. Differential Forms, Almost Solutions, and Almost Quasiconformal Mappings [in Russian], Volgograd University, Volgograd (2007).Google Scholar
  9. 9.
    A. V. Chernavskii, “On finite-multiple open mappings of manifolds,” Mat. Sb., 65, No. 3, 352–393 (1964).Google Scholar
  10. 10.
    A. V. Chernavskii, “Addition to the paper ‘On finite-multiple open mappings of manifolds,’” Mat. Sb., 66, No. 3, 471–472 (1965).MathSciNetGoogle Scholar
  11. 11.
    L. D. Kudryavtsev, “On the variation of mappings of domains,” in: Metric Problems in the Theory of Functions and Mappings [in Russian], Issue 1 (1969), pp. 34–108.Google Scholar
  12. 12.
    Yu. Yu. Trokhimchuk, “On open null-dimensional mappings of manifolds,” in: Metric Problems in the Theory of Functions and Mappings [in Russian], Issue 1 (1969), pp. 209–221.Google Scholar
  13. 13.
    Yu. Yu. Trokhimchuk and A. V. Bondar’, “On the local degree of a null-dimensional mapping,” in: Metric Problems in the Theory of Functions and Mappings [in Russian], Issue 1 (1969) pp. 221–241.Google Scholar
  14. 14.
    Yu. B. Zelinskii, “On continuous mappings of domains of generalized manifolds,” in: Metric Problems in the Theory of Functions and Mappings [in Russian], Issue 4 (1973), pp. 79–91.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2008

Authors and Affiliations

  • V. M. Miklyukov
    • 1
  1. 1.Volgograd UniversityVolgogradRussia

Personalised recommendations