Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

# Cauchy problem for a semilinear Éidel’man parabolic equation

• 20 Accesses

We establish conditions for the existence and uniqueness of a generalized solution of the Cauchy problem for the equation

\begin{aligned} & u_{t} + {\sum\limits_{{\left| \alpha \right|} = {\left| \beta \right|} = 2} {{\left( { - 1} \right)}^{{{\left| \alpha \right|}}} \;D^{\alpha }_{x} {\left( {a_{{\alpha \beta }} {\left( {z,\;t} \right)}D^{\beta }_{x} u} \right)}} } \\ & \;\;\; - {\sum\limits_{{\left| \alpha \right|} = {\left| \beta \right|} = 1} {{\left( { - 1} \right)}^{{{\left| \alpha \right|}}} \;D^{\alpha }_{y} {\left( {b_{{\alpha \beta }} {\left( {z,\;t} \right)}D^{\beta }_{y} u} \right)}} } + {\sum\limits_{{\left| \alpha \right|} = 1} {c_{\alpha } {\left( {z,\;t} \right)}D^{\alpha }_{z} u + c{\left( {z,\,t,\,u} \right)}} } \\ & \quad \quad \quad \quad \quad = {\sum\limits_{{\left| \alpha \right|} \leq 2} {{\left( { - 1} \right)}^{{{\left| \alpha \right|}}} D^{\alpha }_{x} f_{\alpha } {\left( {z,\;t} \right)} - {\sum\limits_{{\left| \alpha \right|} = 1} {D^{\alpha }_{y} g_{\alpha } {\left( {z,\;t} \right)}} }} } \\ \end{aligned}

in a Tikhonov-type class.

This is a preview of subscription content, log in to check access.

## References

1. 1.

S. D. Éidel’man, “On one class of parabolic systems,” Dokl. Akad. Nauk SSSR, 133, No. 1, 40–43 (1960).

2. 2.

M. I. Matiichuk, “Fundamental matrices of solutions of generalized {ie690-01}-parabolic and {ie690-02}-elliptic systems whose coefficients satisfy the integral Hölder condition,” Dopov. Akad. Nauk Ukr. RSR, No. 8, 1010–1013 (1964).

3. 3.

S. D. Éidel’man, Parabolic Systems [in Russian], Nauka, Moscow (1964).

4. 4.

M. I. Matiichuk and S. D. Éidel’man, “On fundamental solutions and Cauchy problem for parabolic systems whose coefficients satisfy the Dini condition,” Tr. Sem. Funkts. Anal., Issue 9, 54–83 (1967).

5. 5.

S. D. Ivasishen and S. D. Éidel’man, “{ie690-03}-parabolic systems,” Tr. Sem. Funkts. Anal., Issue 1, 3–175, 271–273 (1968).

6. 6.

M. D. Martynenko and D. F. Boiko, “{ie690-04}-parabolic boundary-value problems,” Differents. Uravn., 14, No. 12, 2212–2222 (1978).

7. 7.

S. D. Ivasishen, “Integral representation and initial values of solutions of {ie690-05}-parabolic systems,” Ukr. Mat. Zh., 42, No. 4, 500–506 (1990).

8. 8.

L. P. Berezan and S. D. Ivasishen, “Fundamental matrix of solutions of the Cauchy problem for {ie690-06}-parabolic systems with degeneration on the initial hyperplane,” Dopov. Nats. Akad. Nauk Ukr., No. 12, 7–12 (1998).

9. 9.

L. P. Berezan and S. D. Ivasyshen, “On {ie690-07}-parabolic systems strongly degenerate on the initial hyperplane,” Visn. Univ. “L’viv. Politekh.,” Ser. Prikl. Mat., No. 337, 73–76 (1998).

10. 10.

M. I. Matiichuk, Parabolic Singular Boundary-Value Problems [in Ukrainian], Institute of Mathematics, Ukrainian National Academy of Sciences, Kyiv (1999).

11. 11.

S. D. Ivasyshen and H. S. Pasichnyk, “On the fundamental matrix of solutions of the Cauchy problem for dissipative {ie690-08}-parabolic systems with degeneration on the initial hyperplane,” Dopov. Nats. Akad. Nauk Ukr., No. 6, 18–22 (1999).

12. 12.

H. S. Pasichnyk, “On the fundamental matrix of solutions of the Cauchy problem for dissipative {ie690-09}-parabolic systems,” Visn. L’viv. Univ., Ser. Mekh.-Mat., Issue 54, 140–151 (1999).

13. 13.

H. S. Pasichnyk, “On the solvability of the Cauchy problem for {ie690-10}-parabolic systems with increasing coefficients,” Mat. Met. Fiz.-Mekh. Polya, 42, No. 3, 61–65 (1999).

14. 14.

L. P. Berezan, “Integral representation of solutions of a generalized Cauchy problem for a {ie690-11}-parabolic system strongly degenerate on the initial hyperplane,” Nauk. Visn. Cherniv. Univ., Ser. Mat., Issue 46, 13–18 (1999).

15. 15.

L. P. Berezan, “Some properties of the fundamental matrix of solutions of the Cauchy problem for {ie690-12}-parabolic systems with degeneration on the initial hyperplane,” Nauk. Visn. Cherniv. Univ., Ser. Mat., Issue 76, 5–10 (2000).

16. 16.

S. D. Ivasyshen and H. S. Pasichnyk, “On the Cauchy problem for {ie690-13}-parabolic systems with increasing coefficients,” Ukr. Mat. Zh., 52, No. 11, 1484–1496 (2000).

17. 17.

S. D. Ivasyshen and H. S. Pasichnyk, “On the fundamental matrix of solutions of the Cauchy problem for one class of parabolic systems with unbounded coefficients and degeneration on the initial hyperplane,” Nauk. Visn. Cherniv. Univ., Ser. Mat., Issue 76, 82–91 (2000).

18. 18.

S. D. Ivasyshen and O. S. Kondur, “On the Green matrix of the Cauchy problem and characterization of certain classes of solutions for {ie691-01}-parabolic systems of arbitrary order,” Mat. Stud., 14, No. 1, 73–84 (2000).

19. 19.

T. M. Balabushenko, “Estimates for the fundamental matrix of solutions of the Cauchy problem for {ie691-02}-parabolic systems in domains unbounded with respect to the time variable and their applications,” Visn. Nats. Univ. “L’viv. Politekh.,” Ser. Prikl. Mat., No. 411, 6–11 (2000).

20. 20.

T. M. Balabushenko, “On estimates for the fundamental matrix of solutions of the Cauchy problem for {ie691-03}-parabolic systems in domains unbounded with respect to the time variable,” Mat. Stud., 17, No. 2, 163–174 (2002).

21. 21.

T. M. Balabushenko and S. D. Ivasyshen, “On properties of solutions of {ie691-04}-parabolic systems in domains unbounded with respect to the time variable,” Mat. Met. Fiz.-Mekh. Polya, 45, No. 4, 19–26 (2002).

22. 22.

F. Bernis, “Qualitative properties for some nonlinear higher-order degenerate parabolic equations,” Houston J. Math., 14, No. 3, 319–352 (1988).

23. 23.

E. A. Coddington and N. Levinson, Theory of Ordinary Differential Equations [Russian translation], Inostrannaya Literatura, Moscow (1958).

24. 24.

H. Gajewski, K. Gröger, and K. Zacharias, Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen [Russian translation], Mir, Moscow (1978).

25. 25.

J.-L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires [Russian translation], Mir, Moscow (2002).

26. 26.

O. A. Oleinik and E. V. Radkevich, “Parameter-introduction method for the investigation of evolution equations,” Usp. Mat. Nauk, 33, Issue 5, 7–72 (1978).

## Author information

Correspondence to O. E. Korkuna.

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 60, No. 5, pp. 586–602, May, 2008.

## Rights and permissions

Reprints and Permissions

Korkuna, O.E. Cauchy problem for a semilinear Éidel’man parabolic equation. Ukr Math J 60, 671–691 (2008). https://doi.org/10.1007/s11253-008-0081-0